On simple-minded systems and τ-periodic modules of self-injective algebras

被引:3
作者
Chan, Aaron [1 ]
Liu, Yuming [2 ]
Zhang, Zhen [3 ]
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya, Aichi, Japan
[2] Beijing Normal Univ, Lab Math & Complex Syst, Sch Math Sci, Beijing 100875, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
关键词
Simple-minded system; Self-injective algebra; (Stable) Auslander-Reiten quiver; Stably quasi-serial component; Homogeneous tube; AUSLANDER-REITEN COMPONENTS; MUTATIONS;
D O I
10.1016/j.jalgebra.2020.05.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a finite-dimensional self-injective algebra over an algebraically closed field, C a stably quasi-serial component (i.e. its stable part is a tube) of rank n of the Auslander-Reiten quiver of A, and S be a simple-minded system of the stable module category modA. We show that the intersection S boolean AND C is of size strictly less than n, and consists only of modules with quasi-length strictly less than n. In particular, all modules in the homogeneous tubes of the Auslander-Reiten quiver of A cannot be in any simple-minded system. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:416 / 441
页数:26
相关论文
共 32 条
  • [31] Functorially finite hearts, simple-minded systems in negative cluster categories, and noncrossing partitions
    Simoes, Raquel Coelho
    Pauksztello, David
    Ploog, David
    Zvonareva, Alexandra
    COMPOSITIO MATHEMATICA, 2022, 158 (01) : 211 - 243
  • [32] Self-injective Cellular Algebras Whose Representation Type are Tame of Polynomial Growth (vol 23, pg 833, 2020)
    Ariki, S.
    Kase, R.
    Miyamoto, K.
    Wada, K.
    ALGEBRAS AND REPRESENTATION THEORY, 2020, 23 (03) : 873 - 874