High-performance anode materials for Na-ion batteries

被引:84
作者
Cheng, De-Liang [1 ]
Yang, Li-Chun [1 ]
Zhu, Min [1 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Key Lab Adv Energy Storage Mat Guangdong Prov, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Na-ion batteries; Anode materials; Na-storage mechanism; SUPERIOR RATE CAPABILITY; REDUCED GRAPHENE OXIDE; SODIUM-ION; HIGH-CAPACITY; LITHIUM-ION; ELECTROCHEMICAL PROPERTIES; ELECTRODE MATERIAL; CYCLING PERFORMANCES; ALLOYING REACTIONS; FACILE SYNTHESIS;
D O I
10.1007/s12598-018-1015-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Na-ion batteries are considered a promising alternative to Li-ion batteries for large-scale energy storage systems due to their low cost and the natural abundance of Na resource. Great effort is making worldwide to develop high-performance electrode materials for Na-ion batteries, which is critical for Na-ion batteries. This review provides a comprehensive overview of anode materials for Na-ion batteries based on Na-storage mechanism: insertion-based materials, alloy-based materials, conversion-based materials and organic composites. And we summarize the Na-storage mechanism of those anode materials and discuss their failure mechanism. Furthermore, the problems and challenges associated with those anodes are pointed out, and feasible strategies are proposed for designing high-performance anode materials. According to the current state of research, the search for suitable anode materials for Na-ion batteries is still challenging although substantial progress has been achieved. Nevertheless, we believe that high-performance Na-ion batteries would be promising for practical applications in large-scale energy storage systems in the near future.
引用
收藏
页码:167 / 180
页数:14
相关论文
共 94 条
[1]   Nanocolumnar Germanium Thin Films as a High-Rate Sodium-Ion Battery Anode Material [J].
Abel, Paul R. ;
Lin, Yong-Mao ;
de Souza, Tania ;
Chou, Chia-Yun ;
Gupta, Asha ;
Goodenough, John B. ;
Hwang, Gyeong S. ;
Heller, Adam ;
Mullins, C. Buddie .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (37) :18885-18890
[2]   Carbon black:: a promising electrode material for sodium-ion batteries [J].
Alcántara, R ;
Jiménez-Mateos, JM ;
Lavela, P ;
Tirado, JL .
ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (11) :639-642
[3]   An open-framework iron fluoride and reduced graphene oxide nanocomposite as a high-capacity cathode material for Na-ion batteries [J].
Ali, Ghulam ;
Oh, Si Hyoung ;
Kim, Se Young ;
Kim, Ji Young ;
Cho, Byung Won ;
Chung, Kyung Yoon .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (19) :10258-10266
[4]   Germanium as negative electrode material for sodium-ion batteries [J].
Baggetto, Loic ;
Keum, Jong K. ;
Browning, James F. ;
Veith, Gabriel M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 34 :41-44
[5]  
Berthelot R, 2011, NAT MATER, V10, P74, DOI [10.1038/nmat2920, 10.1038/NMAT2920]
[6]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[7]   Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life [J].
Cao, Yuliang ;
Xiao, Lifen ;
Wang, Wei ;
Choi, Daiwon ;
Nie, Zimin ;
Yu, Jianguo ;
Saraf, Laxmikant V. ;
Yang, Zhenguo ;
Liu, Jun .
ADVANCED MATERIALS, 2011, 23 (28) :3155-+
[8]   Polymeric Schiff Bases as Low-Voltage Redox Centers for Sodium-Ion Batteries** [J].
Castillo-Martinez, Elizabeth ;
Carretero-Gonzalez, Javier ;
Armand, Michel .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (21) :5341-5345
[9]   A highly stable (SnOx-Sn)@few layered graphene composite anode of sodium-ion batteries synthesized by oxygen plasma assisted milling [J].
Cheng, Deliang ;
Liu, Jiangwen ;
Li, Xiang ;
Hu, Renzong ;
Zeng, Meiqing ;
Yang, Lichun ;
Zhu, Min .
JOURNAL OF POWER SOURCES, 2017, 350 :1-8
[10]   Enhanced cycling performances of hollow Sn compared to solid Sn in Na-ion battery [J].
Cheng, Yayi ;
Huang, Jianfeng ;
Li, Ruizi ;
Xu, Zhanwei ;
Cao, Liyun ;
Ouyang, Haibo ;
Li, Jiayin ;
Qi, Hui ;
Wang, Caiwei .
ELECTROCHIMICA ACTA, 2015, 180 :227-233