Synthesis of highly oriented WO3 nanowire bundles decorated with Au for gas sensing application

被引:45
|
作者
Zeb, Shah [1 ,2 ]
Sun, Guoxin [1 ,2 ]
Nie, Yong [2 ]
Cui, Yu [1 ]
Jiang, Xuchuan [2 ]
机构
[1] Univ Jinan, Sch Chem & Chem Engn, Jinan 250022, Peoples R China
[2] Univ Jinan, Inst Smart Mat & Engn, Jinan 250022, Peoples R China
基金
中国国家自然科学基金;
关键词
Solvent-thermal method; WO3 nanowire bundles with order and random structure; WO3 nanowire bundles decorated with Au NPs; Sensing performance; n-butanol; Acetone; VOLATILE ORGANIC-COMPOUNDS; HYDROTHERMAL SYNTHESIS; PHOTOELECTROCHEMICAL DETERMINATION; OXIDE NANOSTRUCTURES; ZNO; NANORODS; ACETONE; SENSORS; PERFORMANCE; FABRICATION;
D O I
10.1016/j.snb.2020.128439
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This study demonstrates the synthesis of self-assembled hexagonal WO3 nanowire bundles, with both ordered and random structures in the presence of SO42- ions, by a simple but efficient solvent-thermal method. The as synthesized products are composed of hierarchical bundles with assembled ultrathin nanowire subunits. The growth and assembly mechanisms, regarding WO3 nanowire bundles, may be elucidated through oriented attachment or Ostwald ripening growth, based on a synergistic effect from both oxalic acid and ethylene glycol in dehydrating WO3 center dot xH(2)O to WO3 nanocrystals and in controlling segregation behavior, along with high surface areas (18.4 m(2) g(-1) for ordered structures while 11.6 m(2) g-1 disordered ones), which makes WO3 bundles great potential for gas sensing. To further enhance gas sensing, gold nanoparticles were chosen to deposit on the surface of WO3 nanowire bundles by acting with amino groups linked with WO3 bundles in the HAuCl4 solution with further oxidation. The Au-WO3 composites were examined towards various reducing gases, with exemplary sensitivities of (S = 127, 82), (S = 72, 52) towards n-butanol and acetone, respectively. The sensing mechanisms of such WO3 bundle structures are further understood in detail. This work will make the unique WO3 bundle nanostructures highly potential for gas sensing applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Experimental and theoretical study on the excellent amine-sensing performance of Au decorated WO3 needle-like nanocomposites
    Yang, Xiaohong
    Wang, Yan
    Fu, Haitao
    Wang, Wenwen
    Han, Dezhi
    An, Xizhong
    MATERIALS CHEMISTRY AND PHYSICS, 2019, 234 : 122 - 132
  • [22] Synthesis, Characterization, and Gas Sensing Properties of WO3 Nanoplates
    Xiao Jingkun
    Song Chengwen
    Dong Wei
    Li Chen
    Yin Yanyan
    RARE METAL MATERIALS AND ENGINEERING, 2017, 46 (05) : 1241 - 1244
  • [23] Synthesis of WO3 Nanorods and Their Excellent Ethanol Gas-Sensing Performance
    Xiao, Jingkun
    Che, Yanhan
    Lv, Bowen
    Benedicte, Massamba-Courtoisjoanes
    Feng, Guoqing
    Sun, Tianjun
    Song, Chengwen
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2021, 24 (03):
  • [24] Rh-catalyzed WO3 with anomalous humidity dependence of gas sensing characteristics
    Choi, Kwon-Il
    Hwang, Su-Jin
    Dai, Zhengfei
    Kang, Yun Chan
    Lee, Jong-Heun
    RSC ADVANCES, 2014, 4 (95) : 53130 - 53136
  • [25] Synthesis of Pt nanoparticles functionalized WO3 nanorods and their gas sensing properties
    Liu, Xianghong
    Zhang, Jun
    Yang, Taili
    Guo, Xianzhi
    Wu, Shihua
    Wang, Shurong
    SENSORS AND ACTUATORS B-CHEMICAL, 2011, 156 (02): : 918 - 923
  • [26] Synthesis and enhanced gas sensing properties of Au-nanoparticle decorated CdS nanowires
    Ma, Xiaohui
    Guo, Sijia
    Shen, Jingli
    Chen, Yu
    Chen, Chuan
    Sun, Liang
    Zhang, Xindong
    Ruan, Shengping
    RSC ADVANCES, 2016, 6 (75) : 70907 - 70912
  • [27] Hydrothermal synthesis and gas sensing properties of hexagonal and orthorhombic WO3 nanostructures
    Wei, Shaohong
    Zhao, Junhong
    Hu, Boxiao
    Wu, Kaiqiang
    Du, Weimin
    Zhou, Meihua
    CERAMICS INTERNATIONAL, 2017, 43 (02) : 2579 - 2585
  • [28] Preparation and gas sensing properties of partially broken WO3 nanotubes
    Song, Chengwen
    Li, Chen
    Yin, Yanyan
    Xiao, Jingkun
    Zhang, Xiaoni
    Song, Mingyan
    Dong, Wei
    VACUUM, 2015, 114 : 13 - 16
  • [29] Synthesis of spherical WO3•H2O network for ethanol sensing application
    Liu, Shilin
    Zeng, Wen
    Li, Yanqiong
    MATERIALS LETTERS, 2019, 253 : 42 - 45
  • [30] Synthesis of WO3 nanorods by thermal oxidation technique for NO2 gas sensing application
    Behera, Bhagaban
    Chandra, Sudhir
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2018, 86 : 79 - 84