Insights into the regularity of the formation of 2D 3d transition metal monocarbides

被引:7
作者
Larionov, K., V [1 ,2 ]
Seifert, G. [3 ]
Sorokin, P. B. [1 ,2 ]
机构
[1] Natl Univ Sci & Technol MISiS, 4 Leninskiy Prospekt, Moscow 119049, Russia
[2] Moscow Inst Phys & Technol, Inst Lane 9, Dolgoprudnyi, Moscow Region, Russia
[3] Tech Univ Dresden, Bergstr 66b, Dresden, Germany
基金
俄罗斯科学基金会;
关键词
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; OXYGEN REDUCTION; CR CARBIDE; CARBON; GRAPHENE; SEMICONDUCTOR; MONOLAYERS; NI; CO;
D O I
10.1039/d0nr02436h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, several theoretical predictions have been made about 2D planar FeC, CoC, NiC, and CuC, while their bulk phases still remain unknown. Here, we present a generalization of the 2D family of 3d transition metal monocarbides (TMC) by searching for their stable configurations with DFT methods and an evolutionary algorithm. It is found that in the TMC row (TM = Sc-Cu) the tendency of 3D rocksalt phase formation is monotonously interchanged with 2D phase appearance, namely, planar orthorhombic TMC characterized by carbon dimers inside metal hexagons. Among them, orthorhombic CoC and FeC monocarbides would likely be formed rather than any other 2D metal carbide phase or metal/graphene interface.
引用
收藏
页码:13407 / 13413
页数:7
相关论文
共 50 条
[31]   2D crystals of transition metal dichalcogenide and their iontronic functionalities [J].
Zhang, Y. J. ;
Yoshida, M. ;
Suzuki, R. ;
Iwasa, Y. .
2D MATERIALS, 2015, 2 (04)
[32]   2D Metal/Graphene and 2D Metal/Graphene/Metal Systems for Electrocatalytic Conversion of CO2 to Formic Acid [J].
Cho, Jinwon ;
Medina, Arturo ;
Saih, Ines ;
Choi, Ji Il ;
Drexler, Matthew ;
Goddard, William A., III ;
Alamgir, Faisal M. ;
Jang, Seung Soon .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (12)
[33]   3d transition metal impurities in diamond: Electronic properties and chemical trends [J].
Assali, L. V. C. ;
Machado, W. V. M. ;
Justo, J. F. .
PHYSICAL REVIEW B, 2011, 84 (15)
[34]   Nanomaterials and printing techniques for 2D and 3D soft electronics [J].
Migliorini, Lorenzo ;
Villa, Sara Moon ;
Santaniello, Tommaso ;
Milani, Paolo .
NANO FUTURES, 2022, 6 (03)
[35]   Recent Advances on 2D Materials towards 3D Printing [J].
Gomez, I. Jennifer ;
Alegret, Nuria ;
Dominguez-Alfaro, Antonio ;
Vazquez Sulleiro, Manuel .
CHEMISTRY-SWITZERLAND, 2021, 3 (04) :1314-1343
[36]   Stability of Nanocrystals in 2D and 3D Systems in Ostwald Ripening [J].
Vengrenovych, R. D. ;
Ivanskyy, B. V. ;
Panko, I. I. ;
Stasyk, M. O. ;
Fesiv, I. V. .
POWDER METALLURGY AND METAL CERAMICS, 2015, 54 (5-6) :281-291
[37]   3D Manipulation of 2D Materials Using Microdome Polymer [J].
Wakafuji, Yusai ;
Moriya, Rai ;
Masubuchi, Satoru ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Machida, Tomoki .
NANO LETTERS, 2020, 20 (04) :2486-2492
[38]   The role of excitons in 3D and 2D lead halide perovskites [J].
Marongiu, Daniela ;
Saba, Michele ;
Quochi, Francesco ;
Mura, Andrea ;
Bongiovanni, Giovanni .
JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (39) :12006-12018
[39]   Interfacing graphene and related 2D materials with the 3D world [J].
Tomanek, David .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (13)
[40]   Investigation of the Thermal Conductivity of Materials in 2D/3D Heterostructures [J].
Kaya, Onurcan ;
Donmezer, Nazli .
2021 IEEE 21ST INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE NANO 2021), 2021, :374-377