Construction of Interval-Valued Fuzzy Preference Relations Using Ignorance Functions: Interval-Valued Non Dominance Criterion

被引:0
|
作者
Barrenechea, Edurne [1 ]
Fernandez, Alberto [2 ]
Herrera, Francisco [3 ]
Bustince, Humberto [1 ]
机构
[1] Univ Publ Navarra, Dept Automat & Computac, Navarra, Spain
[2] Univ Lyon 3, Dept Comp Sci, F-69239 Lyon 02, France
[3] Univ Granada, Dept Comp Sci & Artificial Intelligence, E-18071 Granada, Spain
来源
EUROFUSE 2011: WORKSHOP ON FUZZY METHODS FOR KNOWLEDGE-BASED SYSTEMS | 2011年 / 107卷
关键词
GROUP DECISION-MAKING; SETS; REPRESENTATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we present a construction method for interval-valued fuzzy preference relations from a fuzzy preference relation and the representation of the lack of knowledge or ignorance that experts suffer when they define the membership values of the elements of that fuzzy preference relation. We also prove that, with this construction method, we obtain membership intervals for an element which length is equal to the ignorance associated with that element. We then propose a generalization of Orlovsky's non dominance method to solve decision making problems using interval-valued fuzzy preference relations.
引用
收藏
页码:243 / +
页数:4
相关论文
共 50 条
  • [31] Gray Scale Edge Detection using Interval-Valued Fuzzy Relations
    Bouchet, Agustina
    Quiros, Pelayo
    Alonso, Pedro
    Ballarin, Virginia
    Diaz, Irene
    Montes, Susana
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2015, 8 : 16 - 27
  • [32] Interval-valued T-fuzzy filters and interval-valued T-fuzzy congruences on residuated lattices
    Liu, Yi
    Xu, Yang
    Qin, Xiaoyan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 26 (04) : 2021 - 2033
  • [33] Group decision making with incomplete interval-valued linguistic intuitionistic fuzzy preference relations
    Zhang, Liyuan
    Yang, Ziyu
    Li, Tao
    INFORMATION SCIENCES, 2023, 647
  • [34] A New Approach to Interval-Valued Choquet Integrals and the Problem of Ordering in Interval-Valued Fuzzy Set Applications
    Bustince, Humberto
    Galar, Mikel
    Bedregal, Benjamin
    Kolesarova, Anna
    Mesiar, Radko
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2013, 21 (06) : 1150 - 1162
  • [35] Calculating priority weights from interval-valued multiplicative hesitant fuzzy preference relations
    Jie Tang
    Fanyong Meng
    Soft Computing, 2019, 23 : 11573 - 11592
  • [36] An intuitionistic fuzzy programming method for group decision making with interval-valued fuzzy preference relations
    Wan, Shu-Ping
    Wang, Feng
    Xu, Gai-li
    Dong, Jiu-ying
    Tang, Jing
    FUZZY OPTIMIZATION AND DECISION MAKING, 2017, 16 (03) : 269 - 295
  • [37] An intuitionistic fuzzy programming method for group decision making with interval-valued fuzzy preference relations
    Shu-Ping Wan
    Feng Wang
    Gai-li Xu
    Jiu-ying Dong
    Jing Tang
    Fuzzy Optimization and Decision Making, 2017, 16 : 269 - 295
  • [38] Calculating priority weights from interval-valued multiplicative hesitant fuzzy preference relations
    Tang, Jie
    Meng, Fanyong
    SOFT COMPUTING, 2019, 23 (22) : 11573 - 11592
  • [39] Interval-valued implications and interval-valued strong equality index with admissible orders
    Zapata, H.
    Bustince, H.
    Montes, S.
    Bedregal, B.
    Dirnuro, G. P.
    Takac, Z.
    Baczynski, M.
    Fernandez, J.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 88 : 91 - 109
  • [40] Construction of interval-valued fuzzy entropy invariant by translations and scalings
    Barrenechea, Edurne
    Bustince, Humberto
    Pagola, Miguel
    Fernandez, Javier
    SOFT COMPUTING, 2010, 14 (09) : 945 - 952