Construction of Interval-Valued Fuzzy Preference Relations Using Ignorance Functions: Interval-Valued Non Dominance Criterion

被引:0
|
作者
Barrenechea, Edurne [1 ]
Fernandez, Alberto [2 ]
Herrera, Francisco [3 ]
Bustince, Humberto [1 ]
机构
[1] Univ Publ Navarra, Dept Automat & Computac, Navarra, Spain
[2] Univ Lyon 3, Dept Comp Sci, F-69239 Lyon 02, France
[3] Univ Granada, Dept Comp Sci & Artificial Intelligence, E-18071 Granada, Spain
来源
EUROFUSE 2011: WORKSHOP ON FUZZY METHODS FOR KNOWLEDGE-BASED SYSTEMS | 2011年 / 107卷
关键词
GROUP DECISION-MAKING; SETS; REPRESENTATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we present a construction method for interval-valued fuzzy preference relations from a fuzzy preference relation and the representation of the lack of knowledge or ignorance that experts suffer when they define the membership values of the elements of that fuzzy preference relation. We also prove that, with this construction method, we obtain membership intervals for an element which length is equal to the ignorance associated with that element. We then propose a generalization of Orlovsky's non dominance method to solve decision making problems using interval-valued fuzzy preference relations.
引用
收藏
页码:243 / +
页数:4
相关论文
共 50 条
  • [1] Construction of interval-valued fuzzy preference relations from ignorance functions and fuzzy preference relations. Application to decision making
    Barrenechea, Edurne
    Fernandez, Javier
    Pagola, Miguel
    Chiclana, Francisco
    Bustince, Humberto
    KNOWLEDGE-BASED SYSTEMS, 2014, 58 : 33 - 44
  • [2] Interval-Valued Fuzzy Preference Relations and Their Properties
    Bentkowska, Urszula
    INTELLIGENT SYSTEMS'2014, VOL 1: MATHEMATICAL FOUNDATIONS, THEORY, ANALYSES, 2015, 322 : 341 - 352
  • [3] Incomplete interval-valued intuitionistic fuzzy preference relations
    Xu, Zeshui
    Cai, Xiaoqiang
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2009, 38 (08) : 871 - 886
  • [4] Non-dominance and attitudinal prioritisation methods for intuitionistic and interval-valued intuitionistic fuzzy preference relations
    Wu, Jian
    Chiclana, Francisco
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (18) : 13409 - 13416
  • [5] Interval-Valued Multiplicative Intuitionistic Fuzzy Preference Relations
    Yu, Dejian
    Merigo, Jose M.
    Zhou, Ligang
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2013, 15 (04) : 412 - 422
  • [6] Interval-valued fuzzy coimplications and related dual interval-valued conjugate functions
    Reiser, R. H. S.
    Bedregal, B. C.
    dos Reis, G. A. A.
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2014, 80 (02) : 410 - 425
  • [7] Composition of of interval-valued fuzzy relations using aggregation functions
    Elkano, Mikel
    Antonio Sanz, Jose
    Galar, Mikel
    Pekala, Barbara
    Bentkowska, Urszula
    Bustince, Humberto
    INFORMATION SCIENCES, 2016, 369 : 690 - 703
  • [8] An interval-valued fuzzy distance measure between two interval-valued fuzzy numbers
    Hesamian, Gholamreza
    Akbari, Mohammad Ghasem
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 39 (01)
  • [9] Triangular Bounded Consistency of Interval-Valued Fuzzy Preference Relations
    Chang, Wenjun
    Fu, Chao
    Chang, Leilei
    Yang, Shanlin
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (12) : 5511 - 5525
  • [10] Interval-valued Fuzzy Subsemigroups and Subgroups Associated by Interval-valued Fuzzy Graphs
    Ju Hongmei
    Wang Lianhua
    PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL I, 2009, : 484 - 487