High-throughput Raman and Surface-enhanced Raman Microscopy

被引:5
作者
Qi, Ji [1 ]
Motwani, Pratik [1 ]
Wolfe, John C. [1 ]
Shih, Wei-Chuan [1 ]
机构
[1] Univ Houston, Dept Elect & Comp Eng, Houston, TX 77204 USA
来源
BIOMEDICAL VIBRATIONAL SPECTROSCOPY V: ADVANCES IN RESEARCH AND INDUSTRY | 2012年 / 8219卷
关键词
Raman scattering; Raman spectroscopy; chemical imaging; line scan Raman microscopy; surface-enhanced Raman spectroscopy; plasmonic nanostructures; microparticle identification; label-free chemical imaging; SINGLE LIVING CELLS; SPECTROSCOPY; SCATTERING; MICROSPECTROSCOPY; LINE;
D O I
10.1117/12.908971
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Line-scan Raman microscopy (LSRM) is a versatile technique for high throughput label-free chemical mapping. The LSRM instrument achieves a hundred-fold throughput advantage over conventional point-scan Raman microscopy, by projecting a laser line onto the sample and image the Raman scattered light from the entire line using a grating spectrograph and a CCD camera. Two-dimensional chemical maps can be generated by scanning the projected line in the transverse direction. Areas of 100 x 100 mu m(2) can be rapidly mapped with sub-micron spatial resolution and 100% fill factor. The instrument enables rapid classification of microparticles with similar shape, size and refractive index based on their chemical composition. We have achieved an equivalent imaging throughput of 100 microparticles/sec for 1 mu m polystyrene beads. We have extended the technology to surface-enhanced Raman imaging, by characterizing the spatial uniformity of the SERS response of several types of nanostructured plasmonic substrates.
引用
收藏
页数:6
相关论文
共 23 条
[1]   Identification of different bacterial species in biofilms using confocal Raman microscopy [J].
Beier, Brooke D. ;
Quivey, Robert G., Jr. ;
Berger, Andrew J. .
JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (06)
[2]   Label-Free Raman Spectral Imaging of Intracellular Delivery and Degradation of Polymeric Nanoparticle Systems [J].
Chernenko, Tatyana ;
Matthaeus, Christian ;
Milane, Lara ;
Quintero, Luis ;
Amiji, Mansoor ;
Diem, Max .
ACS NANO, 2009, 3 (11) :3552-3559
[3]   Hyperspectral Raman microscopic imaging using Powell lens line illumination [J].
Christensen, KA ;
Morris, MD .
APPLIED SPECTROSCOPY, 1998, 52 (09) :1145-1147
[4]   Raman spectroscopy for noninvasive glucose measurements [J].
Enejder, AMK ;
Scecina, TG ;
Oh, J ;
Hunter, M ;
Shih, WC ;
Sasic, S ;
Horowitz, GL ;
Feld, MS .
JOURNAL OF BIOMEDICAL OPTICS, 2005, 10 (03) :1-9
[5]  
Gift AD, 1999, J RAMAN SPECTROSC, V30, P757, DOI 10.1002/(SICI)1097-4555(199909)30:9<757::AID-JRS446>3.0.CO
[6]  
2-N
[7]   Raman microscopy for dynamic molecular imaging of living cells [J].
Hamada, Keisaku ;
Fujita, Katsumasa ;
Smith, Nicholas Isaac ;
Kobayashi, Minoru ;
Inouye, Yasushi ;
Kawata, Satoshi .
JOURNAL OF BIOMEDICAL OPTICS, 2008, 13 (04)
[8]   A comparison of breast cancer tumor cells with varying expression of the Her2/neu receptor by Raman microspectroscopic imaging [J].
Hartsuiker, Liesbeth ;
Zeijen, Nicole J. L. ;
Terstappen, Leon W. M. M. ;
Otto, Cees .
ANALYST, 2010, 135 (12) :3220-3226
[9]   Surface-enhanced Raman spectroscopy [J].
Haynes, CL ;
McFarland, AD ;
Van Duyne, RP .
ANALYTICAL CHEMISTRY, 2005, 77 (17) :338A-346A
[10]   Enhanced Raman Scattering from Nanoparticle-Decorated Nanocone Substrates: A Practical Approach to Harness In-Plane Excitation [J].
Hu, Ying S. ;
Jeon, Jaeseok ;
Seok, Tae J. ;
Lee, Seunghyun ;
Hafner, Jason H. ;
Drezek, Rebekah A. ;
Choo, Hyuck .
ACS NANO, 2010, 4 (10) :5721-5730