An extended phase-space stochastic quantization of constrained Hamiltonian systems

被引:1
作者
Ter-Kazarian, G. T. [1 ]
Sobouti, Y. [2 ]
机构
[1] Byurakan Astrophys Observ, Byurakan 378433, Armenia
[2] Inst Adv Studies Basic Sci, Gava Zang, Zanjan, Iran
关键词
D O I
10.1088/1751-8113/41/31/315303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Having gained some insight into the concept of 'actual and virtual paths' in a phase-space formalism (Sobouti and Nasiri 1993 Int. J. Mod. Phys. B 7 3255, Nasiri et al 2006 J. Math. Phys. 47 092106), in the present paper we address the question of 'extended' phase-space stochastic quantization of Hamiltonian systems with first class holonomic constraints. We present the appropriate Langevin equations, which quantize such constrained systems, and prove the equivalence of the stochastic quantization method with the conventional path-integral gauge measure of Faddeev-Popov quantization.
引用
收藏
页数:8
相关论文
共 26 条
  • [1] STOCHASTIC QUANTIZATION IN PHASE-SPACE
    CHATURVEDI, S
    KAPOOR, AK
    SRINIVASAN, V
    [J]. PHYSICS LETTERS B, 1985, 157 (5-6) : 400 - 402
  • [2] Chaturvedi S., 1990, STOCHASTIC QUANTIZAT
  • [3] STOCHASTIC QUANTIZATION
    DAMGAARD, PH
    HUFFEL, H
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 152 (5-6): : 227 - +
  • [4] Faddeev L.D., 1969, Theor. Math. Phys., V1, P3, DOI 10.1007/BF01028566
  • [5] STOCHASTIC QUANTIZATION IN PHASE-SPACE
    HOROWITZ, AM
    [J]. PHYSICS LETTERS B, 1985, 156 (1-2) : 89 - 92
  • [6] Huffel H., 1988, STOCHASTIC QUANTIZAT
  • [7] Husimi Kodi, 1940, PROC PHYS MATH SOC, V22, P3, DOI DOI 10.11429/PPMSJ1919.22.4_264
  • [8] Klauder J., 1983, ACTA PHYSICA AUSTR S, VXXV, P251
  • [9] Migdal A. A., 1986, Soviet Physics - Uspekhi, V29, P389, DOI 10.1070/PU1986v029n05ABEH003373
  • [10] STOCHASTIC QUANTIZATION IN THE FIELD-THEORY
    MIGDAL, AA
    [J]. USPEKHI FIZICHESKIKH NAUK, 1986, 149 (01): : 3 - 44