Global existence and exponential stability for a 1D compressible and radiative MHD flow

被引:27
作者
Qin, Yuming [1 ]
Liu, Xin [2 ]
Yang, Xinguang
机构
[1] Donghua Univ, Coll Sci, Dept Appl Math, Shanghai 201620, Peoples R China
[2] Shanghai Inst Foreign Trade, Business Informat Management Sch, Shanghai 201620, Peoples R China
关键词
Magnetohydrodynamics (MHD); Thermal radiation; Global existence; Exponential stability; BOUNDARY-VALUE-PROBLEMS; ONE-DIMENSIONAL EQUATIONS; MAGNETOHYDRODYNAMIC EQUATIONS; CONTINUOUS DEPENDENCE; REAL-GAS; FLUID; MODEL;
D O I
10.1016/j.jde.2012.05.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the global existence and exponential stability of solutions in H-+(i) (i = 1,2,4) for one-dimensional compressible and radiative magnetohydrodynamics (MHD) equations in a bounded domain Omega := (0, 1). (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1439 / 1488
页数:50
相关论文
共 24 条
[1]  
[Anonymous], OPER THEORY ADV APPL
[2]   Existence and continuous dependence of large solutions for the magnetohydrodynamic equations [J].
Chen, GQ ;
Wang, DH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (04) :608-632
[3]   Global solutions of nonlinear magnetohydrodynamics with large initial data [J].
Chen, GQ ;
Wang, DH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 182 (02) :344-376
[4]  
Ducomet B, 1999, MATH METHOD APPL SCI, V22, P1323, DOI 10.1002/(SICI)1099-1476(199910)22:15<1323::AID-MMA80>3.0.CO
[5]  
2-8
[6]   The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars [J].
Ducomet, Bernard ;
Feireisl, Eduard .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 266 (03) :595-629
[7]  
Fan J., 2005, STABILITY WEAK SOLUT
[8]   Vanishing shear viscosity limit in the magnetohydrodynamic equations [J].
Fan, Jishan ;
Jiang, Song ;
Nakamura, Gen .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (03) :691-708
[9]   Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics [J].
Hoff, D ;
Tsyganov, E .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2005, 56 (05) :791-804
[10]   ON INITIAL-BOUNDARY VALUE-PROBLEMS FOR A VISCOUS, HEAT-CONDUCTING, ONE-DIMENSIONAL REAL-GAS [J].
JIANG, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 110 (02) :157-181