Complexes, duality and Chern classes of logarithmic forms along hyperplane arrangements

被引:0
作者
Denham, Graham [1 ]
Schulze, Mathias [2 ]
机构
[1] Univ Western Ontario, Middlesex Coll, Dept Math, London, ON N6A 5B7, Canada
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
来源
ARRANGEMENTS OF HYPERPLANES - SAPPORO 2009 | 2012年 / 62卷
关键词
Hyperplane arrangement; logarithmic differential form; Poincare polynomial; Chern class; SHEAVES; POWERS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe dualities and complexes of logarithmic forms and differentials for central affine and corresponding projective arrangements. We generalize the Borel-Serre formula from vector bundles to sheaves on P-d with locally free resolutions of length one. Combining these results we present a generalization of a formula due to Mustata and Schenck, relating the Poincare polynomial of an arrangement in P-3 (or a locally tame arrangement in P-d with zero-dimensional non-free locus) to the total Chern polynomial of its sheaf of logarithmic 1-forms.
引用
收藏
页码:27 / +
页数:4
相关论文
共 23 条
[1]  
[Anonymous], 1998, Ergeb. Math. Grenzgeb.
[2]  
[Anonymous], MACAULAY2 SOFTWARE S
[3]   SOME PROPERTIES OF STABLE RANK-2 VECTOR BUNDLES ON P-N [J].
BARTH, W .
MATHEMATISCHE ANNALEN, 1977, 226 (02) :125-150
[4]   The maximum likelihood degree [J].
Catanese, Fabrizio ;
Hosten, Serkan ;
Khetan, Amit ;
Sturmfels, Bernd .
AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (03) :671-697
[5]   Critical Points and Resonance of Hyperplane Arrangements [J].
Cohen, D. ;
Denham, G. ;
Falk, M. ;
Varchenko, A. .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (05) :1038-1057
[6]  
Cohen D., COMPLEX ARRANG UNPUB
[7]   Linear free divisors and Frobenius manifolds [J].
de Gregorio, Ignacio ;
Mond, David ;
Sevenheck, Christian .
COMPOSITIO MATHEMATICA, 2009, 145 (05) :1305-1350
[8]  
Denham G., ANN I FOURI IN PRESS
[9]  
Dimca A., 1992, SINGULARITIES TOPOLO
[10]  
DOLGACHEV I, 1982, LECT NOTES MATH, V956, P34