Height difference bounds for elliptic curves over number fields

被引:33
作者
Cremona, JE
Prickett, M
Siksek, S
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[2] Sultan Qaboos Univ, Coll Sci, Dept Math & Stat, Al Khoud 123, Oman
关键词
elliptic curves; heights; canonical height; height bounds;
D O I
10.1016/j.jnt.2005.03.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an elliptic curve over a number field K. Let h be the logarithmic (or Weil) height on E and (h) over cap be the canonical height on E. Bounds for the difference h - (h) over cap are of tremendous theoretical and practical importance. It is possible to decompose h - L as a weighted sum of continuous bounded functions Psi(upsilon) : E(K-upsilon) -> R over the set of places upsilon of K. A standard method for bounding h - (h) over cap, (due to Lang, and previously employed by Silverman) is to bound each function Psi(upsilon) and sum these local 'contributions'. In this paper, we give simple formulae for the extreme values of Psi(upsilon), for non-archimedean upsilon in terms of the Tamagawa index and Kodaira symbol of the curve at upsilon. For real archimedean v a method for sharply bounding Psi(upsilon) was previously given by Siksek [Rocky Mountain J. Math. 25(4) (1990) 1501]. We complement this by giving two methods for sharply bounding Psi(upsilon) for complex archimedean upsilon. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:42 / 68
页数:27
相关论文
共 17 条
  • [1] Ahlfors L, 1979, COMPLEX ANAL
  • [2] The Magma algebra system .1. The user language
    Bosma, W
    Cannon, J
    Playoust, C
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 235 - 265
  • [3] Cremona J, Elliptic curve data
  • [4] CREMONA JE, 1996, ALGORITHMS MODULAR E
  • [5] Demjanenko V. A., 1968, MAT ZAMETKI, V3, P271, DOI DOI 10.1007/BF01387329
  • [6] A conjecture of Lebesque
    Halberstadt, E
    Kraus, A
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 69 : 291 - 302
  • [7] KONDRATYEV A, 2003, THESIS U LINZ AUSTRI
  • [8] LANG S, 1983, PROGR MATH, V35, P155
  • [9] QUASI-FONCTIONS ET HAUTEURS SUR LES VARIETES ABELIENNES
    NERON, A
    [J]. ANNALS OF MATHEMATICS, 1965, 82 (02) : 249 - &
  • [10] Infinite descent on elliptic curves
    Siksek, S
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1995, 25 (04) : 1501 - 1538