Correlation Filtering Target Tracking Based on Color and Part Spatial Relation Constraints

被引:1
作者
Rao Wenbi [1 ]
Rao Chunyang [1 ]
Xiong Qiang [1 ]
机构
[1] Wuhan Univ Technol, Sch Comp Sci & Technol, Wuhan 430079, Hubei, Peoples R China
来源
IIP'17: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION PROCESSING | 2017年
关键词
Target Tracking; Structured Correlation Filtering; Feature Fusion; Color Feature; Target Sub-block Feature; VISUAL TRACKING;
D O I
10.1145/3144789.3144802
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Since the model of the correlated filter trackers is sensitive to deformation and occlusion depending on the spatial layout of the object being tracked, the tracker drifts or even fails when the tracked object is deformed or partially obscured. Aiming at this problem, this paper proposes a tracking algorithm named Correlation Tracking Target Tracking Based on Color and Part Spatial Relation Constraints. The algorithm uses the global color statistical feature and target component sub-block feature of the target to be tracked, and the feature based on color statistics has strong robustness to the change of shape. The target component sub-block feature is used to jointly learn all parts of the correlation filter, and retain the structural information of the target object. The simulation results show that the improved algorithm can track the target more accurately when the target moves rapidly or occludes the target, such as the kernel correlation filter tracking algorithm and the correlation filter tracking algorithm with scale estimation, compared with many current tracking algorithms.
引用
收藏
页数:8
相关论文
共 26 条
  • [1] Adam A., 2006, IEEE C COMPUTER VISI, V1, P798, DOI [DOI 10.1109/CVPR.2006.256, 10.1109/CVPR.2006.256]
  • [2] [Anonymous], 2012, PROC CVPR IEEE
  • [3] Robust Object Tracking with Online Multiple Instance Learning
    Babenko, Boris
    Yang, Ming-Hsuan
    Belongie, Serge
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) : 1619 - 1632
  • [4] Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
  • [5] Robust Visual Tracking Using an Adaptive Coupled-Layer Visual Model
    Cehovin, Luka
    Kristan, Matej
    Leonardis, Ales
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (04) : 941 - 953
  • [6] Danelljan M., 2014, Proceedings of the British Machine Vision Conference (BMVC)
  • [7] Dinh TB, 2011, PROC CVPR IEEE, P1177, DOI 10.1109/CVPR.2011.5995733
  • [8] The Pascal Visual Object Classes (VOC) Challenge
    Everingham, Mark
    Van Gool, Luc
    Williams, Christopher K. I.
    Winn, John
    Zisserman, Andrew
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) : 303 - 338
  • [9] Godec M, 2011, IEEE I CONF COMP VIS, P81, DOI 10.1109/ICCV.2011.6126228
  • [10] Hare S, 2011, IEEE I CONF COMP VIS, P263, DOI 10.1109/ICCV.2011.6126251