Weak solutions of fractional differential equations in non cylindrical domains

被引:17
作者
Kubica, A. [1 ]
Rybka, P. [2 ]
Ryszewska, K. [1 ]
机构
[1] Warsaw Univ Technol, Dept Math & Informat Sci, Ul Koszykowa 75, PL-00662 Warsaw, Poland
[2] Warsaw Univ, Inst Appl Math & Mech, Ul Banacha 2, PL-02097 Warsaw, Poland
关键词
Time fractional Caputo derivative; Heat equation; Galerkin method;
D O I
10.1016/j.nonrwa.2017.01.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a time fractional heat equation in a non cylindrical domain. The problem is one-dimensional. We prove existence of properly defined weak solutions by means of the Galerkin approximation. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:154 / 182
页数:29
相关论文
共 12 条
[1]  
[Anonymous], 2004, Lecture Notes in Mathematics
[2]  
[Anonymous], 2006, Journal of the Electrochemical Society
[3]   Critical nonlinearity exponent and self-similar asymptotics for Levy conservation laws [J].
Biler, P ;
Karch, G ;
Woyczynski, WA .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (05) :613-637
[4]   Nonlinear Diffusion of Dislocation Density and Self-Similar Solutions [J].
Biler, Piotr ;
Karch, Grzegorz ;
Monneau, Regis .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 294 (01) :145-168
[5]  
Foufoula-Georgiou E., 2010, J. Geophys. Res, V115, pF00A16
[6]  
Gariepy RF., 1992, MEASURE THEORY FINE
[7]  
Klafter J., 2011, First Steps in RandomWalks: From Tools to Applications
[8]  
Samko A. A., 1993, Fractional Integrals andDerivatives: Theory and Applications
[9]   Fractional advection-dispersion equations for modeling transport at the Earth surface [J].
Schumer, Rina ;
Meerschaert, Mark M. ;
Baeumer, Boris .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2009, 114
[10]   Moving boundary problems governed by anomalous diffusion [J].
Vogl, Christopher J. ;
Miksis, Michael J. ;
Davis, Stephen H. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2147) :3348-3369