The Role of Ionic Electrolytes on Capacitive Performance of ZnO-Reduced Graphene Oxide Nanohybrids with Thermally Tunable Morphologies

被引:83
作者
Prakash, Anand [1 ]
Bahadur, D. [1 ]
机构
[1] Indian Inst Technol, Dept Met Engn & Mat Sci, Bombay 400076, Maharashtra, India
关键词
graphene-ZnO nanohybrids; supercapacitor; reduced graphene oxide; energy storage; electrical double-layer capacitors; QUANTUM DOTS; SUPERCAPACITORS; HYBRID; NANOCOMPOSITES; COMPOSITES; ELECTRODES; NANORODS; SHEETS; AREA;
D O I
10.1021/am405031y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In the present work, the role of the reaction temperatures on the morphologies of zinc oxide-reduced graphene oxide (ZnO-RGO) nanohybrids and their supercapacitive performance in two different aqueous electrolytes (1.0 M KCl and Na2SO4) were investigated. The ZnO-RGO nanohybrids were synthesized at two different temperatures (ca. 95 and 145 degrees C) by solvothermal method and labeled as ZnO-RGO-1 and ZnO-KGO-2, respectively. The structure and composition of ZnO-RGO nanohybrids were confirmed by means of X-ray diffraction, electron microscopes (scanning and transmission), X-ray photoelectron, photoluminescence, and Raman spectroscopy. These results show that the temperature allows a good control on loading and morphology of ZnO nanoassemblies in ZnO-RGO nanohybrids and at elevated temperature of 145 degrees C, ZnO nanoassemblies break and get completely embedded into RGO matrices. The electrochemical performance of ZnO RGO nanohybrids was examined by cyclic voltammograms (CVs), galvanostatic charge discharge (chronopotentiometry) and electrochemical impedance spectroscopy (EIS) in 1.0 M KCl and Na2SO4 aqueous electrolytes respectively. Combining the EIS and zeta potential behavior, a direct link between the charge transfer resistance and electrical double layers is established which is responsible for excellent capacitive performance of ZnO-RGO-2. The ZnO-KGO-2 displays high specific capacitance (107.9 F/g, scan rate = 50 mV s(-1)) in 1.0 M KCl and exhibits merely 4.2% decay in specific capacitance values over 200 cycles.
引用
收藏
页码:1394 / 1405
页数:12
相关论文
共 47 条
[1]   Interfacing Colloidal Graphene Oxide Sheets with Gold Nanoparticles [J].
Bei, Fengli ;
Hou, Xueliang ;
Chang, Shery L. Y. ;
Simon, George P. ;
Li, Dan .
CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (21) :5958-5964
[2]   New class of carbon-nanotube aerogel electrodes for electrochemical power sources [J].
Bordjiba, Tarik ;
Mohamedi, Mohamed ;
Dao, Le H. .
ADVANCED MATERIALS, 2008, 20 (04) :815-+
[3]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[4]   Zinc Oxide/Reduced Graphene Oxide Composites and Electrochemical Capacitance Enhanced by Homogeneous Incorporation of Reduced Graphene Oxide Sheets in Zinc Oxide Matrix [J].
Chen, Yan-Li ;
Hu, Zhong-Ai ;
Chang, Yan-Qin ;
Wang, Huan-Wen ;
Zhang, Zi-Yu ;
Yang, Yu-Ying ;
Wu, Hong-Ying .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (05) :2563-2571
[5]   Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications [J].
Dong, Xiaochen ;
Cao, Yunfa ;
Wang, Jing ;
Chan-Park, Mary B. ;
Wang, Lianhui ;
Huang, Wei ;
Chen, Peng .
RSC ADVANCES, 2012, 2 (10) :4364-4369
[6]   Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics [J].
Eda, Goki ;
Chhowalla, Manish .
ADVANCED MATERIALS, 2010, 22 (22) :2392-2415
[7]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[8]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[9]   The synthesis and properties of ZnO-graphene nano hybrid for photodegradation of organic pollutant in water [J].
Fu, Dongying ;
Han, Gaoyi ;
Chang, Yunzhen ;
Dong, Jianhua .
MATERIALS CHEMISTRY AND PHYSICS, 2012, 132 (2-3) :673-681
[10]  
Gao W, 2011, NAT NANOTECHNOL, V6, P496, DOI [10.1038/NNANO.2011.110, 10.1038/nnano.2011.110]