Congruences modulo powers of 5 for k-colored partitions

被引:10
作者
Tang, Dazhao [1 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Huxi Campus LD206, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Partition; Congruences; k-Colored partitions; SIMPLE PROOF; RAMANUJAN;
D O I
10.1016/j.jnt.2017.10.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (p-k)(n) enumerate the number of k-colored partitions of n. In this paper, we establish some infinite families of congruences modulo 25 for k-colored partitions. Furthermore, we prove some infinite families of Ramanujan-type congruences modulo powers of 5 for (p-k)(n) with k = 2, 6, and 7. For example, for all integers n >= 0 and alpha >= 1, we prove that p-2 (5(2 alpha-1)n + 7 x 5(2 alpha-1) + 1/12) equivalent to 0 (mod 5(alpha)) and p-2 (5(2 alpha)n + 11 x 5(2 alpha) + 1/12) equivalent to 0 (mod 5(alpha+1)). (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:198 / 214
页数:17
相关论文
共 18 条
[1]  
Andrews G., 1984, ENCY MATH ITS APPL, V2
[2]  
Andrews GE, 2008, DEV MATH, V17, P1, DOI 10.1007/978-0-387-78510-3_1
[3]   RAMANUJAN CONGRUENCES FOR P-K(N) [J].
ATKIN, AOL .
CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (01) :67-&
[4]   Identities and congruences for the general partition and Ramanujan's tau functions [J].
Baruah, Nayandeep Deka ;
Sarmah, Bipul Kumar .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2013, 44 (05) :643-671
[5]   Congruences of multipartition functions modulo powers of primes [J].
Chen, William Y. C. ;
Du, Daniel K. ;
Hou, Qing-Hu ;
Sun, Lisa H. .
RAMANUJAN JOURNAL, 2014, 35 (01) :1-19
[6]   l-Adic properties of the partition function [J].
Folsom, Amanda ;
Kent, Zachary A. ;
Ono, Ken .
ADVANCES IN MATHEMATICS, 2012, 229 (03) :1586-1609
[7]   Multiranks and classical theta functions [J].
Fu, Shishuo ;
Tang, Dazhao .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (02) :549-566
[8]   On a generalized crank for k-colored partitions [J].
Fu, Shishuo ;
Tang, Dazhao .
JOURNAL OF NUMBER THEORY, 2018, 184 :485-497
[9]   A SIMPLE PROOF OF WATSON PARTITION CONGRUENCES FOR POWERS OF 7 [J].
GARVAN, FG .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1984, 36 (JUN) :316-334
[10]  
Gordon B., 1981, GLASGOW MATH J, V24, P107