The Effect of Si Doping or/and Ti Coating on the Electrochemical Properties of Ni-Rich NCA (LiNi0.8Co0.15Al0.05O2) Cathode Material for Lithium-Ion Batteries

被引:2
|
作者
Ha, Tae-Hyun [1 ,2 ]
Park, Jun-Seok [1 ,2 ]
Cho, Gyu-Bong [1 ,2 ]
Ahn, Hyo-Jun [1 ,2 ]
Kim, Ki-Won [1 ,2 ]
Ahn, Jou-Hyeon [1 ,2 ,3 ]
Cho, Kwon-Koo [1 ,2 ]
机构
[1] Gyeongsang Natl Univ, Dept Mat Engn & Convergence Technol, 501 Jinju Daero, Jinju Si 52828, Gyeongsangnam D, South Korea
[2] Gyeongsang Natl Univ, Res Inst Green Energy Convergence Technol, 501 Jinju Daero, Jinju Si 52828, Gyeongsangnam D, South Korea
[3] Gyeongsang Natl Univ, Dept Chem Engn, 501 Jinju Daero, Jinju Si 52828, Gyeongsangnam D, South Korea
基金
新加坡国家研究基金会;
关键词
Lithium Ion Battery; NCA; Cathode Materials; Si Doping; Ti Coating; LINI0.6CO0.2MN0.2O2; CATHODE; OXIDE; PERFORMANCE; R(3)OVER-BAR-M; LINI0.5MN1.5O4; STABILITY;
D O I
10.1166/sam.2020.3797
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
LiNi(x)Co(y)AlzO(2) (NCA) is one of the most promising candidates of cathode material for lithium ion batteries because of its high capacity, energy density, and low cost. However, Ni-rich NCA cathode materials suffer from side reaction (formation of lithium carbonate and hydrogen fluoride attack) between electrolyte and surface of electrode and irreversible phase transition leading to capacity fading and thermal instability. These problems could be improved by coating and doping of transition metal elements. Si doping contributes to stabilization of the unstable R-3m structure, and Ti coating is capable of prohibiting the direct physical contact of electrode with electrolyte. In this work, LiNi(0.8)Co(0.1)5Al(0.05)O(2) (NCA) cathode materials coated or/and doped by Ti and Si elements were fabricated by co- precipitation method using the ball-milling. The crystal structure, morphology and electrochemical properties are investigated using X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), transmission electron microscopy (FE-TEM), and WBCS3000 (WonA tech Co., Ltd.). The EIS and charge/discharge results of Si doped and Ti coated NCA exhibited the lowest resistance value (147.19 Omega) and capacity retentions of 88% after 100 cycles at 0.5 C.
引用
收藏
页码:1581 / 1585
页数:5
相关论文
共 50 条
  • [21] Effects of lithium excess and SnO2 surface coating on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material for Li-ion batteries
    Xie, Zhicheng
    Zhang, Yingying
    Yuan, Anbao
    Xu, Jiaqiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 787 : 429 - 439
  • [22] Influence of electrode preparation on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 composite electrodes for lithium-ion batteries
    Hai Yen Tran
    Greco, Giorgia
    Taeubert, Corina
    Wohlfahrt-Mehrens, Margret
    Haselrieder, Wolfgang
    Kwade, Arno
    JOURNAL OF POWER SOURCES, 2012, 210 : 276 - 285
  • [23] Mechanical Composite of LiNi0.8Co0.15Al0.05O2/Carbon Nanotubes with Enhanced Electrochemical Performance for Lithium-Ion Batteries
    Zhang, Liping
    Fu, Ju
    Zhang, Chuhong
    NANOSCALE RESEARCH LETTERS, 2017, 12
  • [24] Mechanical Composite of LiNi0.8Co0.15Al0.05O2/Carbon Nanotubes with Enhanced Electrochemical Performance for Lithium-Ion Batteries
    Liping Zhang
    Ju Fu
    Chuhong Zhang
    Nanoscale Research Letters, 2017, 12
  • [25] LiMn2O4 Spinel/LiNi0.8Co0.15Al0.05O2 Blends as Cathode Materials for Lithium-Ion Batteries
    Hai Yen Tran
    Taeubert, Corina
    Fleischhammer, Meike
    Axmann, Peter
    Kueppers, Laszlo
    Wohlfahrt-Mehrens, Margret
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (05) : A556 - A561
  • [26] Enhancing the electrochemical performances of LiNi0.8Co0.15Al0.05O2 cathode material by anion/cation co-doping
    Yang, Bin
    Zhou, Lang
    Hu, Xuebu
    Li, Gang
    Qiu, Lei
    Zou, Yongjin
    IONICS, 2021, 27 (04) : 1491 - 1499
  • [27] Superior Electrochemical and Kinetics Performance of LiNi0.8Co0.15Al0.05O2 Cathode by Neodymium Synergistic Modifying for Lithium Ion Batteries
    Wang, Shilei
    Li, Yunjiao
    Liu, Shuaiwei
    Deng, Shiyi
    Chen, Yongxiang
    Zhu, Jie
    Zhang, Jinping
    Guo, Jia
    Chang, Shenghong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (09)
  • [28] Effect of surface alkalinity reduction on cycling and rate performance of LiNi0.8Co0.15Al0.05O2 cathode materials for lithium-ion batteries
    Liu, Jie
    Song, Zheng
    Cui, Can
    Zhang, Yang
    Li, Fengsheng
    MATERIALS LETTERS, 2022, 310
  • [29] Template-assisted synthesis of LiNi0.8Co0.15Al0.05O2 hollow nanospheres as cathode material for lithium ion batteries
    Xiaoyu Wu
    Junjie Lu
    Yue Han
    Huayu Wu
    Lingli Bu
    Ju Xie
    Chen Qian
    Haibo Li
    Guowang Diao
    Ming Chen
    Journal of Materials Science, 2020, 55 : 9493 - 9503
  • [30] Towards superior cyclability of LiNi0.8Co0.15Al0.05O2 cathode material for lithium ion batteries via yttrium modification
    Liu, Shuaiwei
    Li, Yunjiao
    Wang, Shilei
    Chen, Yongxiang
    Tan, Zhouliang
    Yang, Jiachao
    Deng, Shiyi
    He, Zhenjiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 874