The Effect of Si Doping or/and Ti Coating on the Electrochemical Properties of Ni-Rich NCA (LiNi0.8Co0.15Al0.05O2) Cathode Material for Lithium-Ion Batteries

被引:2
作者
Ha, Tae-Hyun [1 ,2 ]
Park, Jun-Seok [1 ,2 ]
Cho, Gyu-Bong [1 ,2 ]
Ahn, Hyo-Jun [1 ,2 ]
Kim, Ki-Won [1 ,2 ]
Ahn, Jou-Hyeon [1 ,2 ,3 ]
Cho, Kwon-Koo [1 ,2 ]
机构
[1] Gyeongsang Natl Univ, Dept Mat Engn & Convergence Technol, 501 Jinju Daero, Jinju Si 52828, Gyeongsangnam D, South Korea
[2] Gyeongsang Natl Univ, Res Inst Green Energy Convergence Technol, 501 Jinju Daero, Jinju Si 52828, Gyeongsangnam D, South Korea
[3] Gyeongsang Natl Univ, Dept Chem Engn, 501 Jinju Daero, Jinju Si 52828, Gyeongsangnam D, South Korea
基金
新加坡国家研究基金会;
关键词
Lithium Ion Battery; NCA; Cathode Materials; Si Doping; Ti Coating; LINI0.6CO0.2MN0.2O2; CATHODE; OXIDE; PERFORMANCE; R(3)OVER-BAR-M; LINI0.5MN1.5O4; STABILITY;
D O I
10.1166/sam.2020.3797
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
LiNi(x)Co(y)AlzO(2) (NCA) is one of the most promising candidates of cathode material for lithium ion batteries because of its high capacity, energy density, and low cost. However, Ni-rich NCA cathode materials suffer from side reaction (formation of lithium carbonate and hydrogen fluoride attack) between electrolyte and surface of electrode and irreversible phase transition leading to capacity fading and thermal instability. These problems could be improved by coating and doping of transition metal elements. Si doping contributes to stabilization of the unstable R-3m structure, and Ti coating is capable of prohibiting the direct physical contact of electrode with electrolyte. In this work, LiNi(0.8)Co(0.1)5Al(0.05)O(2) (NCA) cathode materials coated or/and doped by Ti and Si elements were fabricated by co- precipitation method using the ball-milling. The crystal structure, morphology and electrochemical properties are investigated using X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), transmission electron microscopy (FE-TEM), and WBCS3000 (WonA tech Co., Ltd.). The EIS and charge/discharge results of Si doped and Ti coated NCA exhibited the lowest resistance value (147.19 Omega) and capacity retentions of 88% after 100 cycles at 0.5 C.
引用
收藏
页码:1581 / 1585
页数:5
相关论文
共 27 条
  • [1] Silicon-doped LiNi0.5Mn1.5O4 as a high-voltage cathode for Li-ion batteries
    Bini, Marcella
    Boni, Pietro
    Mustarelli, Piercarlo
    Quinzeni, Irene
    Bruni, Giovanna
    Capsoni, Doretta
    [J]. SOLID STATE IONICS, 2018, 320 : 1 - 6
  • [2] Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries
    Chen, CH
    Liu, J
    Stoll, ME
    Henriksen, G
    Vissers, DR
    Amine, K
    [J]. JOURNAL OF POWER SOURCES, 2004, 128 (02) : 278 - 285
  • [3] The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material
    Chen, Tao
    Li, Xiang
    Wang, Hao
    Yan, Xinxiu
    Wang, Lei
    Deng, Bangwei
    Ge, Wujie
    Qu, Meizhen
    [J]. JOURNAL OF POWER SOURCES, 2018, 374 : 1 - 11
  • [4] Synthesis, thermal, and electrochemical properties of AlPO4-coated LiNi0.8Co0.1Mn0.1O2 cathode materials for a Li-ion cell
    Cho, J
    Kim, TJ
    Kim, J
    Noh, M
    Park, B
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (11) : A1899 - A1904
  • [5] Investigation of new manganese orthophosphate Mn3(PO4)2 coating for nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode and improvement of its thermal properties
    Cho, Woosuk
    Kim, Sang-Min
    Lee, Ko-Woon
    Song, Jun Ho
    Jo, Yong Nam
    Yim, Taeeun
    Kim, Hyuntae
    Kim, Jeom-Soo
    Kim, Young-Jun
    [J]. ELECTROCHIMICA ACTA, 2016, 198 : 77 - 83
  • [6] Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating
    Cho, Woosuk
    Kim, Sang-Min
    Song, Jun Ho
    Yim, Taeeun
    Woo, Sang-Gil
    Lee, Ko-Woon
    Kim, Jeom-Soo
    Kim, Young-Jun
    [J]. JOURNAL OF POWER SOURCES, 2015, 282 : 45 - 50
  • [7] Improved electrochemical performance of LiNi0.8Co0.15Al0.05O2 with ultrathin and thickness-controlled TiO2 shell via atomic layer deposition technology
    Dai, Gaole
    Du, Hongjuan
    Wang, ShanShan
    Cao, Jiali
    Yu, Min
    Chen, Yanbin
    Tang, Yuefeng
    Li, Aidong
    Chen, Yanfeng
    [J]. RSC ADVANCES, 2016, 6 (103): : 100841 - 100848
  • [8] Thermal stability of lithium nickel oxide derivatives.: Part II:: LixNi0.70Co0.15Al0.15O2 and LixNi0.90Mn0.10O2 (x = 0.50 and 0.30).: Comparison with LixNi1.02O2 and LixNi0.89Al0.16O2
    Guilmard, M
    Croguennec, L
    Delmas, C
    [J]. CHEMISTRY OF MATERIALS, 2003, 15 (23) : 4484 - 4493
  • [9] Synthesis of Mg-doped LiNi0.8Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries
    Huang, Bin
    Li, Xinhai
    Wang, Zhixing
    Guo, Huajun
    Xiong, Xunhui
    [J]. CERAMICS INTERNATIONAL, 2014, 40 (08) : 13223 - 13230
  • [10] Structural Analysis of Iron-Doped LiNi0.85Co0.10Al0.05O2 Cathode Materials for Lithium-Ion Batteries
    Jang, Byeong-Chan
    Son, Jong-Tae
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (10) : 10649 - 10653