Upper bound for the size of quadratic Siegel disks

被引:19
作者
Buff, X [1 ]
Chéritat, A [1 ]
机构
[1] Univ Toulouse 3, Lab Emile Picard, F-31062 Toulouse, France
关键词
Continue Fraction; Irrational Number; Continue Fraction Expansion; Siegel Disk; Conformal Radius;
D O I
10.1007/s00222-003-0331-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If alpha is an irrational number, we let {p(n)/q(n)}(ngreater than or equal to0), be the approximants given by its continued fraction expansion. The Bruno series B(alpha) is defined as [GRAPHICS] The quadratic polynomial P-alpha : z \--> l(2ipipialpha) z + z(2) has an indifferent fixed point at the origin. If P-alpha is linearizable, we let r(alpha) be the conformal radius of the Siegel disk and we set r(alpha) = 0 otherwise. Yoccoz proved that if B(alpha) = infinity, then r(alpha) = 0 and P-alpha is not linearizable. In this article, we present a different proof and we show that there exists a constant C such that for all irrational number a with B(alpha) < infinity, we have B(alpha) + log r(alpha) < C. Together with former results of Yoccoz (see [Y]), this proves the conjectured boundedness of B(alpha) + log r(alpha).
引用
收藏
页码:1 / 24
页数:24
相关论文
共 4 条
[1]  
GOLDBERG LR, 1993, ANN SCI ECOLE NORM S, V26, P51
[2]  
Hubbard J. H., 1993, TOPOL METHOD NONL AN, P467
[3]  
PEREZMARCO R, 1993, ANN SCI ECOLE NORM S, V26, P565
[4]  
PETERSEN CL, 1993, ERGOD THEOR DYN SYST, V13, P785