Polymer brushes in solid-state nanopores form an impenetrable entropic barrier for proteins

被引:34
|
作者
Emilsson, Gustav [1 ]
Xiong, Kunli [1 ]
Sakiyama, Yusuke [2 ,3 ]
Malekian, Bita [1 ]
Gagner, Viktor Ahlberg [1 ]
Schoch, Rafael L. [2 ,3 ]
Lim, Roderick Y. H. [2 ,3 ]
Dahlin, Andreas B. [1 ]
机构
[1] Chalmers Univ Technol, Dept Chem & Chem Engn, S-41296 Gothenburg, Sweden
[2] Univ Basel, Biozentrum, CH-4056 Basel, Switzerland
[3] Univ Basel, Swiss Nanosci Inst, CH-4056 Basel, Switzerland
基金
瑞典研究理事会;
关键词
POLY(ETHYLENE GLYCOL); PLASMONIC NANOPORES; NANOHOLE ARRAYS; PEG BRUSHES; ADSORPTION; MICROSCOPY; MEMBRANES; BLOOD; FILMS;
D O I
10.1039/c7nr09432a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polymer brushes are widely used to prevent the adsorption of proteins, but the mechanisms by which they operate have remained heavily debated for many decades. We show conclusive evidence that a polymer brush can be a remarkably strong kinetic barrier towards proteins by using poly(ethylene glycol) grafted to the sidewalls of pores in 30 nm thin gold films. Despite consisting of about 90% water, the free coils seal apertures up to 100 nm entirely with respect to serum protein translocation, as monitored label-free through the plasmonic activity of the nanopores. The conclusions are further supported by atomic force microscopy and fluorescence microscopy. A theoretical model indicates that the brush undergoes a morphology transition to a sealing state when the ratio between the extension and the radius of curvature is approximately 0.8. The brush-sealed pores represent a new type of ultrathin filter with potential applications in bioanalytical systems.
引用
收藏
页码:4663 / 4669
页数:7
相关论文
共 50 条
  • [41] Modeling thermophoretic effects in solid-state nanopores
    Belkin, Maxim
    Chao, Shu-Han
    Giannetti, Gino
    Aksimentiev, Aleksei
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (04) : 826 - 838
  • [42] Fundamentals and potentials of solid-state nanopores: a review
    Wen, Chenyu
    Zhang, Shi-Li
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (02)
  • [43] Optofluidic devices with integrated solid-state nanopores
    Liu, Shuo
    Hawkins, Aaron R.
    Schmidt, Holger
    MICROCHIMICA ACTA, 2016, 183 (04) : 1275 - 1287
  • [44] DNA Origami Gatekeepers for Solid-State Nanopores
    Wei, Ruoshan
    Martin, Thomas G.
    Rant, Ulrich
    Dietz, Hendrik
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (20) : 4864 - 4867
  • [45] Detecting DNA Depurination with Solid-State Nanopores
    Marshall, Michael M.
    Ruzicka, Jan A.
    Taylor, Ethan W.
    Hall, Adam R.
    PLOS ONE, 2014, 9 (07):
  • [46] On Induced Surface Charge in Solid-State Nanopores
    Yao, Yao
    Wen, Chenyu
    Pham, Ngan H.
    Zhang, Shi-Li
    LANGMUIR, 2020, 36 (30) : 8874 - 8882
  • [47] Selective (Bio)Functionalization of Solid-State Nanopores
    Pla-Roca, Mateu
    Isa, Lucio
    Kumar, Karthik
    Reimhult, Erik
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (11) : 6030 - 6035
  • [48] Optofluidic devices with integrated solid-state nanopores
    Shuo Liu
    Aaron R. Hawkins
    Holger Schmidt
    Microchimica Acta, 2016, 183 : 1275 - 1287
  • [49] Towards Nucleotide Differentiation with Solid-State Nanopores
    Venta, Kimberly
    Shemer, Gabriel
    Rodriguez-Manzo, Julio A.
    Drndic, Marija
    BIOPHYSICAL JOURNAL, 2013, 104 (02) : 523A - 523A
  • [50] Fabrication of solid-state nanopores and its perspectives
    Kudr, Jiri
    Skalickova, Sylvie
    Nejdl, Lukas
    Moulick, Amitava
    Ruttkay-Nedecky, Branislav
    Adam, Vojtech
    Kizek, Rene
    ELECTROPHORESIS, 2015, 36 (19) : 2367 - 2379