Diagnosis of Broken Rotor Fault in Inverter-Fed IM by Using Analytical Signal Angular Fluctuation

被引:0
|
作者
Goktas, Taner [1 ]
Arkan, Muslum [2 ]
机构
[1] Hitit Univ, Osmancik OD Vocat Sch Higher Educ, Corum, Turkey
[2] Inonu Univ, Dept Elect & Elect Engn, Malatya, Turkey
来源
2014 16TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE AND EXPOSITION (PEMC) | 2014年
关键词
ASAF method; broken rotor bar; fault diagnosis; fault detection; Hilbert transform; inverter; load torque oscillation; INDUCTION-MOTOR; BAR; MACHINES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The aim of this paper is to detect broken rotor bar fault at the presence of low frequency load torque oscillation in inverter-fed induction motors. The low frequency load torque oscillation in induction motor may sometimes have the same effect as broken rotor bar fault on the stator current. Especially, when load torque oscillation frequency is close to twice the slip frequency, additional processing need to be done to separate these two effects from each other. To discern these two effects, Analytical Signal Angular Fluctuation (ASAF) spectrum is used. Experimental results are presented for separating broken rotor bar fault from low frequency load torque oscillation.
引用
收藏
页码:337 / 342
页数:6
相关论文
共 50 条
  • [1] Broken Rotor Bar Fault Diagnosis in Inverter-Fed Induction Motors Using the Rectification Technology
    Wang W.
    Song X.
    Chen Q.
    Zhao W.
    Zhu H.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2022, 37 (16): : 4074 - 4083
  • [2] Detection of Broken Rotor Bars Faults in Inverter-Fed Induction Motors
    Godoy, W. F.
    da Silva, I. N.
    Goedtel, A.
    Palacios, R. H. C.
    Scalassara, P.
    Morinigo-Sotelo, D.
    Duque-Perez, O.
    2018 XIII INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES (ICEM), 2018, : 1803 - 1808
  • [3] Characteristics Analysis and Measurement of Inverter-Fed Induction Motors for Stator and Rotor Fault Detection
    Tang, Jing
    Yang, Yongheng
    Chen, Jie
    Qiu, Ruichang
    Liu, Zhigang
    ENERGIES, 2020, 13 (01)
  • [4] A New Criterion for Rotor Broken Bar Fault Diagnosis in Line-start and Inverter-fed Induction Motors using Hilbert-Huang Transform
    Faiz, Jawad
    Ghorbanian, Vahid
    Ebrahimi, Bashir Mahdi
    IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, DRIVES AND ENERGY SYSTEMS (PEDES 2012), 2012,
  • [5] Diagnosis of Broken Rotor Bars during the Startup of Inverter-Fed Induction Motors Using the Dragon Transform and Functional ANOVA
    Fernandez-Cavero, Vanesa
    Garcia-Escudero, Luis A.
    Pons-Llinares, Joan
    Fernandez-Temprano, Miguel A.
    Duque-Perez, Oscar
    Morinigo-Sotelo, Daniel
    APPLIED SCIENCES-BASEL, 2021, 11 (09):
  • [6] Broken rotor bar fault detection of the grid and inverter-fed induction motor by effective attenuation of the fundamental component
    Asad, Bilal
    Vaimann, Toomas
    Belahcen, Anouar
    Kallaste, Ants
    Rassolkin, Anton
    Iqbal, Muhammad Naveed
    IET ELECTRIC POWER APPLICATIONS, 2019, 13 (12) : 2005 - 2014
  • [7] Early Detection of Broken Rotor Bars in Inverter-Fed Induction Motors Using Speed Analysis of Startup Transients
    Garcia-Calva, Tomas A.
    Morinigo-Sotelo, Daniel
    Fernandez-Cavero, Vanessa
    Garcia-Perez, Arturo
    Romero-Troncoso, Rene de J.
    ENERGIES, 2021, 14 (05)
  • [8] Detection of Broken Rotor Bars in Nonlinear Startups of Inverter-Fed Induction Motors
    Fernandez-Cavero, Vanessa
    Pons-Llinares, Joan
    Duque-Perez, Oscar
    Morinigo-Sotelo, Daniel
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2021, 57 (03) : 2559 - 2568
  • [9] Imbalanced Diagnosis Scheme for Incipient Rotor Faults in Inverter-Fed Induction Motors
    Martin-Diaz, Ignacio
    Garcia-Calva, Tomas
    Duque-Perez, Oscar
    Morinigo-Sotelo, Daniel
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [10] The electromagnetic interference and diagnosis of rotor fault for inverter fed motor
    Lv, F
    Jv, XY
    Jiao, RP
    Li, SE
    Li, Y
    Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, 2005, : 1143 - 1147