A solution of the minimum-time speed planning problem based on lattice theory

被引:8
作者
Consolini, Luca [1 ]
Laurini, Mattia [1 ]
Locatelli, Marco [1 ]
Minari, Andrea [1 ]
机构
[1] Univ Parma, Dipartimento Ingn & Architettura, Parco Area Sci 181-a, I-43124 Parma, Italy
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2020年 / 357卷 / 12期
关键词
ROBOTIC MANIPULATORS; MOBILE ROBOT; PATH; EFFICIENCY; VEHICLE;
D O I
10.1016/j.jfranklin.2020.05.024
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For a vehicle on an assigned path, we find the minimum-time speed law that satisfies kinematic and dynamic constraints, related to maximum speed and maximum tangential and transversal acceleration. We present a necessary and sufficient condition for the feasibility of the problem and a simple operator, based on the solution of two ordinary differential equations, which computes the optimal solution. Theoretically, we show that the problem feasible set, if not empty, is a lattice, whose supremum element corresponds to the optimal solution. (C) 2020 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:7617 / 7637
页数:21
相关论文
共 35 条
[1]  
Arscott F., 2013, Differential Equations with Discontinuous Righthand Sides: Control Systems Mathematics and Its Applications
[2]   TIME-OPTIMAL CONTROL OF ROBOTIC MANIPULATORS ALONG SPECIFIED PATHS [J].
BOBROW, JE ;
DUBOWSKY, S ;
GIBSON, JS .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1985, 4 (03) :3-17
[3]  
Brezak M, 2011, IEEE ASME INT C ADV, P942, DOI 10.1109/AIM.2011.6027134
[4]  
Chen C, 2014, IEEE INT CONF ROBOT, P6108, DOI 10.1109/ICRA.2014.6907759
[5]  
Consolini L, 2016, MED C CONTR AUTOMAT, P490, DOI 10.1109/MED.2016.7536010
[6]   Optimal Time-Complexity Speed Planning for Robot Manipulators [J].
Consolini, Luca ;
Locatelli, Marco ;
Minari, Andrea ;
Nagy, Akos ;
Vajk, Istvan .
IEEE TRANSACTIONS ON ROBOTICS, 2019, 35 (03) :790-797
[7]   An optimal complexity algorithm for minimum-time velocity planning [J].
Consolini, Luca ;
Locatelli, Marco ;
Minari, Andrea ;
Piazzi, Aurelio .
SYSTEMS & CONTROL LETTERS, 2017, 103 :50-57
[8]  
Davey B.A., 2002, INTRO LATTICES ORDER, V2
[9]   Layer, Lie algebraic method of motion planning for nonholonomic systems [J].
Duleba, Ignacy ;
Khefifi, Wissem ;
Karcz-Duleba, Iwona .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (01) :201-215
[10]   Semi-analytical minimum time solutions with velocity constraints for trajectory following of vehicles [J].
Frego, Marco ;
Bertolazzi, Enrico ;
Biral, Francesco ;
Fontanelli, Daniele ;
Palopoli, Luigi .
AUTOMATICA, 2017, 86 :18-28