共 50 条
Surface phase transitions in ice: from fundamental interactions to applications
被引:16
|作者:
Wettlaufer, J. S.
[1
,2
,3
]
机构:
[1] Yale Univ, New Haven, CT 06520 USA
[2] Univ Oxford, Math Inst, Oxford, England
[3] Stockholm Univ, Royal Inst Technol, NORDITA, S-10691 Stockholm, Sweden
来源:
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES
|
2019年
/
377卷
/
2146期
基金:
瑞典研究理事会;
关键词:
surfaces;
phase transitions;
ice physics;
SECONDARY FROST HEAVE;
MORPHOLOGICAL INSTABILITY;
GROWTH;
MODEL;
ANISOTROPY;
STABILITY;
MECHANICS;
DIFFUSION;
MIGRATION;
DYNAMICS;
D O I:
10.1098/rsta.2018.0261
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Interfaces divide all phases of matter and yet in most practical settings it is tempting to ignore their energies and the associated implications. There are many reasons for this, not the least of which is the introduction of a new pair of canonically conjugate variables-interfacial energy and its counterpart the surface area. A key set of questions surrounding the treatment of multiphase flows concerns how and when we must account for such effects. I begin this discussion with an abbreviated review of the basic theory of lower-dimensional phase transitions and describe a range of situations in which the bulk behaviour of a two-phase (and in some cases two-component) system is dominated by surface effects. Then I discuss a number of settings in which the bulk and surface behaviour can interact on equal footing. These can include the dynamic and thermodynamic behaviour of floating sea ice, the freezing and drying of colloidal suspensions (such as soil) and the mechanisms of protoplanetesimal formation by inter-particle collisions in accretion discs. This article is part of the theme issue 'The physics and chemistry of ice: scaffolding across scales, from the viability of life to the formation of planets'.
引用
收藏
页数:17
相关论文