IR spectroelectrochemical study of the binding of carbon monoxide to the active site of Desulfovibrio fructosovorans Ni-Fe hydrogenase

被引:70
作者
DeLacey, AL
Stadler, C
Fernandez, VM
Hatchikian, EC
Fan, HJ
Li, SH
Hall, MB
机构
[1] CSIC, Inst Catalisis, E-28049 Madrid, Spain
[2] CNRS, Inst Biol Struct & Microbiol, F-13402 Marseille 20, France
[3] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA
来源
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY | 2002年 / 7卷 / 03期
基金
美国国家科学基金会;
关键词
metalloprotein; Fourier transform IR; spectroelectrochemistry; carbon monoxide; density functional theory;
D O I
10.1007/s00775-001-0301-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The binding of carbon monoxide. a competitive inhibitor of many hydrogenases, to the active site of Desulfovibrio fructosovorans hydrogenase has been studied by infrared spectroscopy in a spectroelectrochemical cell. Direct evidence has been obtained of which redox states of the enzyme can bind extrinsic CO. Redox states A, B and SU do not bind extrinsic CO. only after reductive activation of the hydrogenase can CO bind to the active site. Two states with bound extrinsic CO can be distinguished by FTIR. These two states are in redox equilibrium and are most probably due to different oxidation states of the proximal 4Fe-4S cluster. Vibrational frequencies and theoretical quantum mechanics studies (DFT) of this process preclude the possibility of strong bonding of extrinsic CO to the Fe or Ni atoms or the site. We propose that CO inhibition is caused by weak interaction of the extrinsic ligand with the Ni atom, blocking electron and proton transfer at the active site. A calculated structure with a weakly bound extrinsic CO at Ni has relative CO frequencies in excellent agreement with the experimental ones.
引用
收藏
页码:318 / 326
页数:9
相关论文
共 62 条
[1]   THE STRUCTURE AND MECHANISM OF IRON-HYDROGENASES [J].
ADAMS, MWW .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1020 (02) :115-145
[2]   NICKEL HYDROGENASES - IN SEARCH OF THE ACTIVE-SITE [J].
ALBRACHT, SPJ .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1994, 1188 (03) :167-204
[3]   A hybrid density functional theory molecular mechanics study of nickel-iron hydrogenase: Investigation of the active site redox states [J].
Amara, P ;
Volbeda, A ;
Fontecilla-Camps, JC ;
Field, MJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (18) :4468-4477
[4]  
[Anonymous], BIOINORGANIC CHEM NI
[5]   INFRARED-DETECTABLE GROUPS SENSE CHANGES IN CHARGE-DENSITY ON THE NICKEL CENTER IN HYDROGENASE FROM CHROMATIUM-VINOSUM [J].
BAGLEY, KA ;
DUIN, EC ;
ROSEBOOM, W ;
ALBRACHT, SPJ ;
WOODRUFF, WH .
BIOCHEMISTRY, 1995, 34 (16) :5527-5535
[6]   INFRARED STUDIES ON THE INTERACTION OF CARBON-MONOXIDE WITH DIVALENT NICKEL IN HYDROGENASE FROM CHROMATIUM-VINOSUM [J].
BAGLEY, KA ;
VANGARDEREN, CJ ;
CHEN, M ;
DUIN, EC ;
ALBRACHT, SPJ ;
WOODRUFF, WH .
BIOCHEMISTRY, 1994, 33 (31) :9229-9236
[7]   AN X-RAY-ABSORPTION SPECTROSCOPIC STUDY OF NICKEL REDOX CHEMISTRY IN HYDROGENASE [J].
BAGYINKA, C ;
WHITEHEAD, JP ;
MARONEY, MJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (09) :3576-3585
[8]  
Banwell C.N., 1983, Fundamentals of molecular spectroscopy
[9]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[10]   NICKEL AND IRON-SULFUR CENTERS IN DESULFOVIBRIO-GIGAS HYDROGENASE - ELECTRON-SPIN-RESONANCE SPECTRA, REDOX PROPERTIES AND INTERACTIONS [J].
CAMMACK, R ;
PATIL, DS ;
HATCHIKIAN, EC ;
FERNANDEZ, VM .
BIOCHIMICA ET BIOPHYSICA ACTA, 1987, 912 (01) :98-109