Bifurcation method and traveling wave solution to Whitham-Broer-Kaup equation

被引:9
作者
Shen, JW [1 ]
Xu, W
Jin, YF
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
[2] Xuchang Univ, Dept Math, Xuchang 461000, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
solitary wave solution; kink and anti-kink wave solution; periodic wave solution; WBK equations; bifurcation theory; dynamical systems;
D O I
10.1016/j.amc.2005.01.078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using bifurcation method to Whitham-Broer-Kaup shallow water equations, bifurcation parameter sets are shown. Numbers of solitary waves, kink waves and periodic waves are given. Under various parameter conditions, all explicit formulas of solitary wave solutions, kink wave solutions and periodic wave solutions are listed. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:677 / 702
页数:26
相关论文
共 17 条
  • [1] ABLOWITZ MJ, 1991, NOLINEAR EVOLUTION E
  • [2] APPROXIMATE EQUATIONS FOR LONG WATER WAVES
    BROER, LJF
    [J]. APPLIED SCIENTIFIC RESEARCH, 1975, 31 (05): : 377 - 395
  • [3] Byrd P. F, 1971, Handbook of Elliptic Integrals for Engineers and Scientists
  • [4] A generalized method and general form solutions to the Whitham-Broer-Kaup equation
    Chen, Y
    Wang, Q
    Li, BA
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 22 (03) : 675 - 682
  • [5] Chow S. N., 1981, METHODS BIFURCATION
  • [6] Fan EG, 1998, APPL MATH MECH-ENGL, V19, P645
  • [7] GUCKKENHEIMER J, 1983, NONLINEAR OSCILLATIO
  • [8] HIGHER-ORDER WATER-WAVE EQUATION AND METHOD FOR SOLVING IT
    KAUP, DJ
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1975, 54 (02): : 396 - 408
  • [9] MATHEMATICS OF DISPERSIVE WATER-WAVES
    KUPERSHMIDT, BA
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 99 (01) : 51 - 73
  • [10] Travelling wave solutions in a model of the helix polypeptide chains
    Li, JB
    Shen, JW
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 20 (04) : 827 - 841