A predator-prey model with diseases in both prey and predator

被引:30
|
作者
Gao, Xubin [1 ,2 ]
Pan, Qiuhui [1 ,3 ]
He, Mingfeng [1 ]
Kang, Yibin [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, City Inst, Dalian 116600, Peoples R China
[3] Dalian Univ Technol, Sch Innovat Expt, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Lotka-Volterra equations; Eco-epidemiological model; Predation rate; Basic reproduction number; INFECTED PREY; SYSTEM; POPULATIONS; DELAY;
D O I
10.1016/j.physa.2013.07.077
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we present and analyze a predator prey model, in which both predator and prey can be infected. Each of the predator and prey is divided into two categories, susceptible and infected. The epidemics cannot be transmitted between prey and predator by predation. The predation ability of susceptible predators is stronger than infected ones. Likewise, it is more difficult to catch a susceptible prey than an infected one. And the diseases cannot be hereditary in both of the predator and prey populations. Based on the assumptions above, we find that there are six equilibrium points in this model. Using the base reproduction number, we discuss the stability of the equilibrium points qualitatively. Then both of the local and global stabilities of the equilibrium points are analyzed quantitatively by mathematical methods. We provide numerical results to discuss some interesting biological cases that our model exhibits. Lastly, we discuss how the infectious rates affect the stability, and how the other parameters work in the five possible cases within this model. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:5898 / 5906
页数:9
相关论文
共 50 条
  • [1] A predator-prey model with genetic differentiation both in the predator and prey
    Wang, Lisha
    Zhao, Jiandong
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (03) : 2616 - 2635
  • [2] A predator-prey mathematical model with both the populations affected by diseases
    Das, Krishna Pada
    Kundu, Kusumika
    Chattopadhyay, J.
    ECOLOGICAL COMPLEXITY, 2011, 8 (01) : 68 - 80
  • [3] Stability analysis and bifurcation of a predator-prey model with time delay in prey and diseases in predator
    Department of Mathematics and Physics, Shijiazhuang Tiedao University, No. 17, East Bei’erhuan Road, Qiaodong District, Shijiazhuang
    050043, China
    Int. J. Innov. Comput. Inf. Control, 1 (43-56):
  • [4] A predator-prey model with infected prey
    Hethcote, HW
    Wang, WD
    Han, LT
    Zhien, M
    THEORETICAL POPULATION BIOLOGY, 2004, 66 (03) : 259 - 268
  • [5] STABILITY ANALYSIS AND BIFURCATION OF A PREDATOR-PREY MODEL WITH TIME DELAY IN PREY AND DISEASES IN PREDATOR
    Wang, Qiubao
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2015, 11 (01): : 43 - 56
  • [6] A predator-prey model with disease in the prey
    Chattopadhyay, J
    Arino, O
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (06) : 747 - 766
  • [7] A predator-prey model with disease in prey
    Rahman, Md. Sabiar
    Chakravarty, Santabrata
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2013, 18 (02): : 191 - 209
  • [8] SPATIOTEMPORAL DYNAMICS IN A PREDATOR-PREY MODEL WITH A FUNCTIONAL RESPONSE INCREASING IN BOTH PREDATOR AND PREY DENSITIES
    Yang, Ruizhi
    Ding, Yuting
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (05): : 1962 - 1979
  • [9] Spatiotemporal Dynamics in a Predator-Prey Model with Functional Response Increasing in Both Predator and Prey Densities
    Yang, Ruizhi
    Song, Qiannan
    An, Yong
    MATHEMATICS, 2022, 10 (01)
  • [10] A Prey-predator Model with Infection in Both Prey and Predator
    Bera, S. P.
    Maiti, A.
    Samanta, G. P.
    FILOMAT, 2015, 29 (08) : 1753 - 1767