Assessment of Machine Learning vs Standard Prediction Rules for Predicting Hospital Readmissions

被引:66
作者
Morgan, Daniel J. [1 ,2 ,3 ]
Bame, Bill [1 ]
Zimand, Paul [1 ]
Dooley, Patrick [1 ]
Thom, Kerri A. [1 ,2 ]
Harris, Anthony D. [2 ,3 ]
Bentzen, Soren [2 ]
Ettinger, Walt [1 ]
Garrett-Ray, Stacy D. [1 ]
Tracy, J. Kathleen [2 ]
Liang, Yuanyuan [2 ]
机构
[1] Univ Maryland Med Syst, Dept Populat Hlth, Baltimore, MD USA
[2] Univ Maryland, Sch Med, Dept Epidemiol & Publ Hlth, 10 S Pine St,Med Student Teaching Facil 334, Baltimore, MD 21201 USA
[3] Vet Affairs Maryland Healthcare Syst, Dept Healthcare Epidemiol, Baltimore, MD USA
关键词
RISK;
D O I
10.1001/jamanetworkopen.2019.0348
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
IMPORTANCE Hospital readmissions are associated with patient harm and expense. Ways to prevent hospital readmissions have focused on identifying patients at greatest risk using prediction scores. OBJECTIVE To identify the type of score that best predicts hospital readmissions. DESIGN, SETTING, AND PARTICIPANTS This prognostic study included 14 062 consecutive adult hospital patients with 16 649 discharges from a tertiary care center, suburban community hospital, and urban critical access hospital in Maryland from September 1, 2016, through December 31, 2016. Patients not included as eligible discharges by the Centers for Medicare & Medicaid Services or the Chesapeake Regional Information System for Our Patients were excluded. A machine learning rank score, the Baltimore score (B score) developed using a machine learning technique, for each individual hospital using data from the 2 years before September 1, 2016, was compared with standard readmission risk assessment scores to predict 30-day unplanned readmissions. MAIN OUTCOMES AND MEASURES The 30-day readmission rate evaluated using various readmission scores: B score, HOSPITAL score, modified LACE score, and Maxim/RightCare score. RESULTS Of the 10 732 patients (5605 [52.2%] male; mean [SD] age, 54.56 [22.42] years) deemed to be eligible for the study, 1422 were readmitted. The area under the receiver operating characteristic curve (AUROC) for individual rules was 0.63 (95% CI, 0.61-0.65) for the HOSPITAL score, which was significantly lower than the 0.66 for modified LACE score (95% CI, 0.64-0.68; P < .001). The B score machine learning score was significantly better than all other scores; 48 hours after admission, the AUROC of the B score was 0.72 (95% CI, 0.70-0.73), which increased to 0.78 (95% CI, 0.77-0.79) at discharge (all P < .001). At the hospital using Maxim/RightCare score, the AUROC was 0.63 (95% CI, 0.59-0.69) for HOSPITAL, 0.64 (95% CI, 0.61-0.68) for Maxim/RightCare, and 0.66 (95% CI, 0.62-0.69) for modified LACE score. The B score was 0.72 (95% CI, 0.69-0.75) 48 hours after admission and 0.81 (95% CI, 0.79-0.84) at discharge. In directly comparing the B score with the sensitivity at cutoff values for modified LACE, HOSPITAL, and Maxim/RightCare scores, the B score was able to identify the same number of readmitted patients while flagging 25.5% to 54.9% fewer patients. CONCLUSIONS AND RELEVANCE Among 3 hospitals in different settings, an automated machine learning score better predicted readmissions than commonly used readmission scores. More efficiently targeting patients at higher risk of readmission may be the first step toward potentially preventing readmissions.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Comparison of Machine Learning Algorithms for the Prediction of Preventable Hospital Readmissions
    Garcia-Arce, Andres
    Rico, Florentino
    Zayas-Castro, Jose L.
    JOURNAL FOR HEALTHCARE QUALITY, 2018, 40 (03) : 129 - 138
  • [2] Application of machine learning in predicting hospital readmissions: a scoping review of the literature
    Huang, Yinan
    Talwar, Ashna
    Chatterjee, Satabdi
    Aparasu, Rajender R.
    BMC MEDICAL RESEARCH METHODOLOGY, 2021, 21 (01)
  • [3] Performance of advanced machine learning algorithms overlogistic regression in predicting hospital readmissions: A meta-analysis
    Talwar, Ashna
    Lopez-Olivo, Maria A.
    Huang, Yinan
    Ying, Lin
    Aparasu, Rajender R.
    EXPLORATORY RESEARCH IN CLINICAL AND SOCIAL PHARMACY, 2023, 11
  • [4] An integrated machine learning framework for hospital readmission prediction
    Jiang, Shancheng
    Chin, Kwai-Sang
    Qu, Gang
    Tsui, Kwok L.
    KNOWLEDGE-BASED SYSTEMS, 2018, 146 : 73 - 90
  • [5] Predicting 30-day readmissions in pneumonia patients using machine learning and residential greenness
    Choi, Seohyun
    Kim, Young Jae
    Lee, Seon Min
    Kim, Kwang Gi
    DIGITAL HEALTH, 2025, 11
  • [6] Application of Machine Learning Techniques to Help in the Feature Selection Related to Hospital Readmissions of Suicidal Behavior
    Castillo-Sanchez, Gema
    Jojoa Acosta, Mario
    Garcia-Zapirain, Begonya
    De la Torre, Isabel
    Franco-Martin, Manuel
    INTERNATIONAL JOURNAL OF MENTAL HEALTH AND ADDICTION, 2024, 22 (01) : 216 - 237
  • [7] UTILITY OF MACHINE LEARNING, NATURAL LANGUAGE PROCESSING, AND ARTIFICIAL INTELLIGENCE IN PREDICTING HOSPITAL READMISSIONS AFTER ORTHOPAEDIC SURGERY A Systematic Review and Meta-Analysis
    Fares, Mohamad Y.
    Liu, Harry H.
    Etges, Ana Paula Beck da Silva
    Zhang, Benjamin
    Warner, Jon J. P.
    Olson, Jeffrey J.
    Fedorka, Catherine J.
    Khan, Adam Z.
    Best, Matthew J.
    Kirsch, Jacob M.
    Simon, Jason E.
    Sanders, Brett
    Costouros, John G.
    Zhang, Xiaoran
    Jones, Porter
    Haas, Derek A.
    Abboud, Joseph A.
    JBJS REVIEWS, 2024, 12 (08)
  • [8] Machine Learning Prediction of Postoperative Emergency Department Hospital Readmission
    Misic, Velibor V.
    Gabel, Eilon
    Hofer, Ira
    Rajaram, Kumar
    Mahajan, Aman
    ANESTHESIOLOGY, 2020, 132 (05) : 968 - 980
  • [9] Predicting 30-Day Readmissions in Patients With Heart Failure Using Administrative Data: A Machine Learning Approach
    Sharma, Vishal
    Kulkarni, Vinaykumar
    McAlister, Finlay
    Eurich, Dean
    Keshwani, Shanil
    Simpson, Scot H.
    Voaklander, Don
    Samanani, Salim
    JOURNAL OF CARDIAC FAILURE, 2022, 28 (05) : 710 - 722
  • [10] Explainable machine learning for the prediction and assessment of complex drought impacts
    Zhang, Beichen
    Abu Salem, Fatima K.
    Hayes, Michael J.
    Smith, Kelly Helm
    Tadesse, Tsegaye
    Wardlow, Brian D.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 898