Lacunary interpolation by antiperiodic trigonometric polynomials

被引:49
作者
Delvos, FJ [1 ]
Knoche, L [1 ]
机构
[1] Univ Gesamthsch Siegen, Lehrstuhl Math 1, D-57068 Siegen, Germany
来源
BIT | 1999年 / 39卷 / 03期
关键词
lacunary interpolation; trigonometric interpolation; antiperiodic trigonometric interpolation;
D O I
10.1023/A:1022314518264
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The problem of lacunary trigonometric interpolation is investigated. Does a trigonometric polynomial T exist which satisfies T(x(k)) = a(k), (DT)-T-m(x(k)) = b(k), 0 less than or equal to k less than or equal to n - 1, where x(k), = k pi/n is a nodal set, a(k) and b(k) are prescribed complex numbers, D = d/dx and m is an element of N. Results obtained by several authors for the periodic case are extended to the antiperiodic case. In particular solvability is established when n as well as m are even. In this case a periodic solution does not exist.
引用
收藏
页码:439 / 450
页数:12
相关论文
共 5 条
  • [1] HERMITE INTERPOLATION WITH TRIGONOMETRIC POLYNOMIALS
    DELVOS, FJ
    [J]. BIT, 1993, 33 (01): : 113 - 123
  • [2] LIU YP, 1990, APPROX THEORY ITS AP, V6, P85
  • [3] TRIGONOMETRIC INTERPOLATION
    SHARMA, A
    VARMA, AK
    [J]. DUKE MATHEMATICAL JOURNAL, 1965, 32 (02) : 341 - &
  • [4] SHARMA A, P C CONSTR THEOR FUN, P420
  • [5] SHARMA A, 1992, APPROX THEORY APPL, V8, P1