Extrusion 3D (Bio)Printing of Alginate-Gelatin-Based Composite Scaffolds for Skeletal Muscle Tissue Engineering

被引:36
|
作者
Sonaye, Surendrasingh Y. [1 ]
Ertugral, Elif G. [2 ]
Kothapalli, Chandrasekhar R. [2 ]
Sikder, Prabaha [1 ]
机构
[1] Cleveland State Univ, Mech Engn, Cleveland, OH 44115 USA
[2] Cleveland State Univ, Chem & Biomed Engn, Cleveland, OH 44115 USA
关键词
bioprinting; alginate-gelatin scaffolds; skeletal muscle tissue engineering; volumetric muscle loss; rheology; BIOINK; CONSTRUCTS; HYDROGELS; LEADS;
D O I
10.3390/ma15227945
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Volumetric muscle loss (VML), which involves the loss of a substantial portion of muscle tissue, is one of the most serious acute skeletal muscle injuries in the military and civilian communities. The injured area in VML may be so severely affected that the body loses its innate capacity to regenerate new functional muscles. State-of-the-art biofabrication methods such as bioprinting provide the ability to develop cell-laden scaffolds that could significantly expedite tissue regeneration. Bioprinted cell-laden scaffolds can mimic the extracellular matrix and provide a bioactive environment wherein cells can spread, proliferate, and differentiate, leading to new skeletal muscle tissue regeneration at the defect site. In this study, we engineered alginate-gelatin composite inks that could be used as bioinks. Then, we used the inks in an extrusion printing method to develop design-specific scaffolds for potential VML treatment. Alginate concentration was varied between 4-12% w/v, while the gelatin concentration was maintained at 6% w/v. Rheological analysis indicated that the alginate-gelatin inks containing 12% w/v alginate and 6% w/v gelatin were most suitable for developing high-resolution scaffolds with good structural fidelity. The printing pressure and speed appeared to influence the printing accuracy of the resulting scaffolds significantly. All the hydrogel inks exhibited shear thinning properties and acceptable viscosities, though 8-12% w/v alginate inks displayed properties ideal for printing and cell proliferation. Alginate content, crosslinking concentration, and duration played significant roles (p < 0.05) in influencing the scaffolds' stiffness. Alginate scaffolds (12% w/v) crosslinked with 300, 400, or 500 mM calcium chloride (CaCl2) for 15 min yielded stiffness values in the range of 45-50 kPa, i.e., similar to skeletal muscle. The ionic strength of the crosslinking concentration and the alginate content significantly (p < 0.05) affected the swelling and degradation behavior of the scaffolds. Higher crosslinking concentration and alginate loading enhanced the swelling capacity and decreased the degradation kinetics of the printed scaffolds. Optimal CaCl2 crosslinking concentration (500 mM) and alginate content (12% w/v) led to high swelling (70%) and low degradation rates (28%) of the scaffolds. Overall, the results indicate that 12% w/v alginate and 6% w/v gelatin hydrogel inks are suitable as bioinks, and the printed scaffolds hold good potential for treating skeletal muscle defects such as VML.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Rheological evaluation of Laponite/alginate inks for 3D extrusion-based printing
    Davila, Jose Luis
    d'Avila, Marcos Akira
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 101 (1-4) : 675 - 686
  • [22] 3D bioactive composite scaffolds for bone tissue engineering
    Turnbull, Gareth
    Clarke, Jon
    Picard, Frederic
    Riches, Philip
    Jia, Luanluan
    Han, Fengxuan
    Li, Bin
    Shu, Wenmiao
    BIOACTIVE MATERIALS, 2018, 3 (03) : 278 - 314
  • [23] Toward Biomimetic Scaffolds for Tissue Engineering: 3D Printing Techniques in Regenerative Medicine
    Chung, Justin J.
    Im, Heejung
    Kim, Soo Hyun
    Park, Jong Woong
    Jung, Youngmee
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [24] Characterization of Alginate-Gelatin-Cholesteryl Ester Liquid Crystals Bioinks for Extrusion Bioprinting of Tissue Engineering Scaffolds
    Abdulmaged, Alyaa Idrees
    Soon, Chin Fhong
    Talip, Balkis A.
    Zamhuri, Siti Adibah Ahmad
    Mostafa, Salama A.
    Zhou, Wenbin
    POLYMERS, 2022, 14 (05)
  • [25] HYDROGELS FOR 3D EXTRUSION PRINTING OF GRADIENT SCAFFOLDS
    Geevarghese, Rency
    Zur-Pinska, Joanna
    Wlodarczyk-Biegun, Malgorzata
    TISSUE ENGINEERING PART A, 2023, 29 (11-12) : 1145 - 1145
  • [26] Applications of 3D Bio-Printing in Tissue Engineering and Biomedicine
    Jiang, Wei
    Mei, Haiying
    Zhao, Shuyan
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2021, 17 (06) : 989 - 1006
  • [27] Research progress of 3D printing composite inks for cartilage tissue engineering
    Cheng D.
    Chen B.
    Wu M.
    Rui H.
    Pan H.
    Ruan C.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2021, 51 (09): : 981 - 997
  • [28] Enhanced gelatin methacryloyl nanohydroxyapatite hydrogel for high-fidelity 3D printing of bone tissue engineering scaffolds
    Naolou, Toufik
    Schadzek, Nadine
    Hornbostel, Jan Mathis
    Pepelanova, Iliyana
    Frommer, Miriam
    Loetz, Franziska
    Sauheitl, Leopold
    Dultz, Stefan
    Felde, Vincent J. M. N. L.
    Myklebost, Ola
    Lee-Thedieck, Cornelia
    BIOFABRICATION, 2025, 17 (02)
  • [29] Alginate-waterborne polyurethane 3D bioprinted scaffolds for articular cartilage tissue engineering
    Olmos-Juste, R.
    Larranaga-Jaurrieta, G.
    Larraza, I.
    Ramos-Diez, S.
    Camarero-Espinosa, S.
    Gabilondo, N.
    Eceiza, A.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 253
  • [30] Tunable Alginate-Polyvinyl Alcohol Bioinks for 3D Printing in Cartilage Tissue Engineering
    Aitchison, Alexandra Hunter
    Allen, Nicholas B.
    Mitra, Kishen
    Abar, Bijan
    O'Neill, Conor N.
    Bagheri, Kian
    Anastasio, Albert T.
    Adams, Samuel B.
    GELS, 2024, 10 (12)