High-Throughput FPGA Implementation of QR Decomposition

被引:37
作者
Munoz, Sergio D. [1 ]
Hormigo, Javier [1 ]
机构
[1] Univ Malaga, Dept Comp Architecture, E-29071 Malaga, Spain
关键词
COordinate Rotation DIgital Computer (CORDIC); field-programmable gate array (FPGA); high throughput; pipelined; QR decomposition; systolic array; ARCHITECTURE; INVERSION; ALGORITHM;
D O I
10.1109/TCSII.2015.2435753
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief presents a hardware design to achieve high-throughput QR decomposition, using the Givens rotation method. It utilizes a new 2-D systolic array architecture with pipelined processing elements, which are based on the COordinate Rotation DIgital Computer (CORDIC) algorithm. CORDIC computes vector rotations through shifts and additions. This approach allows a continuous computation of QR factorizations with simple hardware. A fixed-point field-programmable gate array (FPGA) architecture for 4 x 4 matrices has been optimized by balancing the number of CORDIC iterations with the final error. As a result, compared with other previous proposals for FPGA, our design achieves at least 50% more throughput, as well as much less resource utilization.
引用
收藏
页码:861 / 865
页数:5
相关论文
共 15 条
[1]  
Abels M, 2011, CONF REC ASILOMAR C, P904, DOI 10.1109/ACSSC.2011.6190140
[2]  
Aslan S, 2012, MIDWEST SYMP CIRCUIT, P470, DOI 10.1109/MWSCAS.2012.6292059
[3]  
Boone K., 2014, 4 JOINT INT C INF CO, P1
[4]  
Chan SC, 2004, IEEE T CIRCUITS-II, V51, P29, DOI [10.1109/TCSII.2003.821514, 10.1109/tcsii.2003.821514]
[5]   Iterative QR Decomposition Architecture Using the Modified Gram-Schmidt Algorithm for MIMO Systems [J].
Chang, Robert Chen-Hao ;
Lin, Chih-Hung ;
Lin, Kuang-Hao ;
Huang, Chien-Lin ;
Chen, Feng-Chi .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2010, 57 (05) :1095-1102
[6]  
Chen D., 2011, 2011 International Conference on Reconfigurable Computing and FPGAs, P327, DOI DOI 10.1109/RECONFIG.2011.38
[7]   PARALLEL VLSI ALGORITHM FOR STABLE INVERSION OF DENSE MATRICES [J].
ELAMAWY, A ;
DHARMARAJAN, KR .
IEE PROCEEDINGS-E COMPUTERS AND DIGITAL TECHNIQUES, 1989, 136 (06) :575-580
[8]  
Ercegovac M. D., 2003, Digital Arithmetic
[9]  
Golub G.H., 2013, Matrix computations, V3
[10]  
GOTZE J, 1991, SIAM J SCI STAT COMP, V12, P800, DOI 10.1137/0912042