Multiscale and residual-free bubble functions for reaction-advection-diffusion problems

被引:24
作者
Franca, LP
Ramalho, JVA
Valentin, F
机构
[1] Univ Colorado, Denver, CO 80217 USA
[2] LNCC, BR-25651070 Petropolis, RJ, Brazil
基金
美国国家科学基金会;
关键词
D O I
10.1615/IntJMultCompEng.v3.i3.40
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a finite element method based on enriching the Galerkin approximation spaces with a combination of multiscale functions and residual-free bubbles (RFB). This approach is presented as a Petrov-Galerkin method and applied to the singularly perturbed reaction-advection-diffusion model. Numerical tests confirm that switching RFB by suitable multiscale functions in the elements connected to the outflow boundaries of the domain improves the accuracy of the solution in this region.
引用
收藏
页码:297 / 312
页数:16
相关论文
共 50 条
[31]   Applications of the pseudo residual-free bubbles to the stabilization of the convection-diffusion-reaction problems in 2D [J].
Sendur, A. ;
Nesliturk, A. ;
Kaya, A. .
Computer Methods in Applied Mechanics and Engineering, 2014, 277 :154-179
[32]   Applications of the pseudo residual-free bubbles to the stabilization of the convection-diffusion-reaction problems in 2D [J].
Sendur, A. ;
Nesliturk, A. ;
Kaya, A. .
Computer Methods in Applied Mechanics and Engineering, 2014, 277 :154-179
[33]   The Motion of the Front in the Reaction-Advection-Diffusion Problem with Periodic Coefficients [J].
Nikulin, E. I. .
MOSCOW UNIVERSITY PHYSICS BULLETIN, 2022, 77 (05) :747-754
[34]   Experimental studies of pattern formation in a reaction-advection-diffusion system [J].
Nugent, CR ;
Quarles, WM ;
Solomon, TH .
PHYSICAL REVIEW LETTERS, 2004, 93 (21)
[35]   BOUNDARY CONTROL PROBLEM FOR THE REACTION-ADVECTION-DIFFUSION EQUATION WITH A MODULUS DISCONTINUITY OF ADVECTION [J].
Bulatov, P. E. ;
Cheng, Han ;
Wei, Yuxuan ;
Volkov, V. T. ;
Levashova, N. T. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 220 (01) :1097-1109
[36]   Reaction-advection-diffusion equations, such as [8, 16, 17, 22]. [J].
Steeves D. ;
Gharesifard B. ;
Mansouri A.-R. .
SIAM Journal on Control and Optimization, 2019, 57 (05) :3272-3296
[37]   Bistable traveling waves in impulsive reaction-advection-diffusion models [J].
Wang, Zhenkun ;
Wang, Hao .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 285 :17-39
[38]   The optimal initial datum for a class of reaction-advection-diffusion equations [J].
Halim, Omar Abdul ;
El Smaily, Mohammad .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 221
[39]   Boundary Control for a Certain Class of Reaction-Advection-Diffusion System [J].
Cruz-Quintero, Eduardo ;
Jurado, Francisco .
MATHEMATICS, 2020, 8 (11) :1-22
[40]   Existence and Stability of Periodic Contrast Structures in the Reaction-Advection-Diffusion Problem [J].
Nefedov, N. N. ;
Nikulin, E. I. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2015, 22 (02) :215-226