Fractal spectral triples on Kellendonk's C*-algebra of a substitution tiling

被引:1
作者
Mampusti, Michael [1 ]
Whittaker, Michael F. [1 ]
机构
[1] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
Graph iterated function systems; Noncommutative geometry; Nonperiodic tilings; Spectral triples; SUBSHIFTS; SYMMETRY; SPACES; ORDER;
D O I
10.1016/j.geomphys.2016.11.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new class of noncommutative spectral triples on Kellendonk's C*-algebra associated with a nonperiodic substitution tiling. These spectral triples are constructed from fractal trees on tilings, which define a geodesic distance between any two tiles in the tiling. Since fractals typically have infinite Euclidean length, the geodesic distance is defined using Perron-Frobenius theory, and is self-similar with scaling factor given by the Perron-Frobenius eigenvalue. We show that each spectral triple is theta-summable, and respects the hierarchy of the substitution system. To elucidate our results, we construct a fractal tree on the Penrose tiling, and explicitly show how it gives rise to a collection of spectral triples. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:224 / 239
页数:16
相关论文
共 29 条
[1]   Topological invariants for substitution tilings and their associated C*-algebras [J].
Anderson, JE ;
Putnam, IF .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1998, 18 :509-537
[2]  
[Anonymous], Lecture Notes in Mathematics
[3]  
[Anonymous], 1994, NONCOMMUTATIVE GEOME
[4]  
[Anonymous], THESIS
[5]  
Bellissard J., 1986, Statistical Mechanics and Field Theory: Mathematical Aspects. Proceedings of the International Conference, P99
[6]  
Bellissard J., ARXIV10084617
[7]  
Bellissard J., 1992, From Number Theory to Physics, ppp 538
[8]   COMPACT METRIC-SPACES, FREDHOLM MODULES, AND HYPERFINITENESS [J].
CONNES, A .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 :207-220
[9]   Fractal dual substitution tilings [J].
Frank, Natalie Priebe ;
Webster, Samuel B. G. ;
Whittaker, Michael F. .
JOURNAL OF FRACTAL GEOMETRY, 2016, 3 (03) :265-317
[10]  
Julien A., 2015, MATH APERIODIC ORDER