Confocal non-line-of-sight imaging based on the light-cone transform

被引:350
|
作者
O'Toole, Matthew [1 ]
Lindell, David B. [1 ]
Wetzstein, Gordon [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
LOOKING; CORNERS; LAYERS; WALLS; TIME;
D O I
10.1038/nature25489
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
How to image objects that are hidden from a camera's view is a problem of fundamental importance to many fields of research(1-20), with applications in robotic vision, defence, remote sensing, medical imaging and autonomous vehicles. Non-line-of-sight (NLOS) imaging at macroscopic scales has been demonstrated by scanning a visible surface with a pulsed laser and a time-resolved detector(14-19). Whereas light detection and ranging (LIDAR) systems use such measurements to recover the shape of visible objects from direct reflections(21-24), NLOS imaging reconstructs the shape and albedo of hidden objects from multiply scattered light. Despite recent advances, NLOS imaging has remained impractical owing to the prohibitive memory and processing requirements of existing reconstruction algorithms, and the extremely weak signal of multiply scattered light. Here we show that a confocal scanning procedure can address these challenges by facilitating the derivation of the light-cone transform to solve the NLOS reconstruction problem. This method requires much smaller computational and memory resources than previous reconstruction methods do and images hidden objects at unprecedented resolution. Confocal scanning also provides a sizeable increase in signal and range when imaging retroreflective objects. We quantify the resolution bounds of NLOS imaging, demonstrate its potential for real-time tracking and derive efficient algorithms that incorporate image priors and a physically accurate noise model. Additionally, we describe successful outdoor experiments of NLOS imaging under indirect sunlight.
引用
收藏
页码:338 / 341
页数:4
相关论文
共 50 条
  • [1] Non-line-of-sight Surface Reconstruction Using the Directional Light-cone Transform
    Young, Sean, I
    Lindell, David B.
    Girod, Bernd
    Taubman, David
    Wetzstein, Gordon
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 1404 - 1413
  • [2] Coherent Control of Light for Non-Line-of-Sight Imaging
    Starshynov, Ilya
    Ghafur, Omair
    Fitches, James
    Faccio, Daniele
    PHYSICAL REVIEW APPLIED, 2019, 12 (06)
  • [3] Acoustic Non-Line-of-Sight Imaging
    Lindell, David B.
    Wetzstein, Gordon
    Koltun, Vladlen
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3773 - 6782
  • [4] Convolutional Approximations to the General Non-Line-of-Sight Imaging Operator
    Ahn, Byeongjoo
    Dave, Akshat
    Veeraraghavan, Ashok
    Gkioulekas, Ioannis
    Sankaranarayanan, Aswin C.
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 7888 - 7898
  • [5] Improved algorithm of non-line-of-sight imaging based on the Bayesian statistics
    Huang, Luzhe
    Wang, Xiaobin
    Yuan, Yifan
    Gu, Songyun
    Shen, Yonghang
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2019, 36 (05) : 834 - 838
  • [6] Non-line-of-sight imaging
    Faccio, Daniele
    Velten, Andreas
    Wetzstein, Gordon
    NATURE REVIEWS PHYSICS, 2020, 2 (06) : 318 - 327
  • [7] Steady-state Non-Line-of-Sight Imaging
    Chen, Wenzheng
    Daneau, Simon
    Mannan, Fahim
    Heide, Felix
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3783 - 6792
  • [8] Photon-Efficient Non-Line-of-Sight Imaging
    Liu, Jianjiang
    Zhou, Yijun
    Huang, Xin
    Li, Zheng-Ping
    Xu, Feihu
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2022, 8 : 639 - 650
  • [9] Passive non-line-of-sight imaging using plenoptic information
    Lin, Di
    Hashemi, Connor
    Leger, James R.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2020, 37 (04) : 540 - 551
  • [10] Multi-Modal Non-Line-of-Sight Passive Imaging
    Beckus, Andre
    Tamasan, Alexandru
    Ati, George K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (07) : 3372 - 3382