Analysis and efficient implementation of alternating direction implicit finite volume method for Riesz space-fractional diffusion equations in two space dimensions

被引:12
作者
Liu, Huan [1 ]
Zheng, Xiangcheng [2 ]
Fu, Hongfei [3 ]
Wang, Hong [2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[3] Ocean Univ China, Sch Math Sci, Qingdao 266100, Shandong, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
ADI; fast solution algorithm; finite volume method; space-fractional diffusion equation; stability and convergence analysis; SPECTRAL METHOD; ANOMALOUS DIFFUSION; DIFFERENCE METHOD; ELEMENT-METHOD; APPROXIMATIONS; SCHEME; CONVERGENCE; REGULARITY; STABILITY;
D O I
10.1002/num.22554
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we develop a Crank-Nicolson alternating direction implicit finite volume method for time-dependent Riesz space-fractional diffusion equation in two space dimensions. Norm-based stability and convergence analysis are given to show that the developed method is unconditionally stable and of second-order accuracy both in space and time. Furthermore, we develop a lossless matrix-free fast conjugate gradient method for the implementation of the numerical scheme, which only hasO(N)memory requirement andO(NlogN)computational complexity per iteration withNbeing the total number of spatial unknowns. Several numerical experiments are presented to demonstrate the effectiveness and efficiency of the proposed scheme for large-scale modeling and simulations.
引用
收藏
页码:818 / 835
页数:18
相关论文
共 41 条
  • [1] [Anonymous], 1985, MATRIX ANAL
  • [2] [Anonymous], 2007, TEXTS APPL MATH
  • [3] A SPECTRAL LEGENDRE-GAUSS-LOBATTO COLLOCATION METHOD FOR A SPACE-FRACTIONAL ADVECTION DIFFUSION EQUATIONS WITH VARIABLE COEFFICIENTS
    Bhrawy, A. H.
    Baleanu, D.
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2013, 72 (02) : 219 - 233
  • [4] Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations
    Bu, Weiping
    Tang, Yifa
    Yang, Jiye
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 276 : 26 - 38
  • [5] FOURTH ORDER ACCURATE SCHEME FOR THE SPACE FRACTIONAL DIFFUSION EQUATIONS
    Chen, Minghua
    Deng, Weihua
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (03) : 1418 - 1438
  • [6] DAVIS P. J., 1979, Circulant Matrices
  • [7] REGULARITY OF THE SOLUTION TO 1-D FRACTIONAL ORDER DIFFUSION EQUATIONS
    Ervin, V. J.
    Heuer, N.
    Roop, J. P.
    [J]. MATHEMATICS OF COMPUTATION, 2018, 87 (313) : 2273 - 2294
  • [8] Variational formulation for the stationary fractional advection dispersion equation
    Ervin, VJ
    Roop, JP
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (03) : 558 - 576
  • [9] Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation
    Feng, L. B.
    Zhuang, P.
    Liu, F.
    Turner, I.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 52 - 65
  • [10] A finite volume method for two-dimensional Riemann-Liouville space-fractional diffusion equation and its efficient implementation
    Fu, Hongfei
    Liu, Huan
    Wang, Hong
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 388 : 316 - 334