Classification of Motor Imagery BCI Using Multivariate Empirical Mode Decomposition

被引:170
作者
Park, Cheolsoo [1 ]
Looney, David [2 ]
Rehman, Naveed Ur [3 ]
Ahrabian, Alireza [2 ]
Mandic, Danilo P. [2 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Univ London Imperial Coll Sci Technol & Med, Elect & Elect Engn Dept, London SW7 2BT, England
[3] COMSATS Inst Informat Technol, Islamabad, Pakistan
关键词
Brain-computer interface (BCI); electroencephalogram (EEG); empirical mode decomposition; motor imagery paradigm; noise assisted multivariate extensions of empirical mode decomposition (NA-MEMD); BRAIN-COMPUTER INTERFACE; SINGLE-TRIAL EEG; DESYNCHRONIZATION; SYNCHRONIZATION; COMPONENTS; SPECTRUM; DYNAMICS; MU;
D O I
10.1109/TNSRE.2012.2229296
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Brain electrical activity recorded via electroencephalogram (EEG) is the most convenient means for brain-computer interface (BCI), and is notoriously noisy. The information of interest is located in well defined frequency bands, and a number of standard frequency estimation algorithms have been used for feature extraction. To deal with data nonstationarity, low signal-to-noise ratio, and closely spaced frequency bands of interest, we investigate the effectiveness of recently introduced multivariate extensions of empirical mode decomposition (MEMD) in motor imagery BCI. We show that direct multi-channel processing via MEMD allows for enhanced localization of the frequency information in EEG, and, in particular, its noise-assisted mode of operation (NA-MEMD) provides a highly localized time-frequency representation. Comparative analysis with other state of the art methods on both synthetic benchmark examples and a well established BCI motor imagery dataset support the analysis.
引用
收藏
页码:10 / 22
页数:13
相关论文
共 50 条
  • [21] Enhanced Motor Imagery Training Using a Hybrid BCI With Feedback
    Yu, Tianyou
    Xiao, Jun
    Wang, Fangyi
    Zhang, Rui
    Gu, Zhenghui
    Cichocki, Andrzej
    Li, Yuanqing
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (07) : 1706 - 1717
  • [22] EEG Classification for Multiclass Motor Imagery BCI
    Liu, Chong
    Wang, Hong
    Lu, Zhiguo
    2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 4450 - 4453
  • [23] Two Class Motor Imagery EEG Signal Classification for BCI Using LDA and SVM
    Kanagaluru, Venkatesh
    Sasikala, M.
    TRAITEMENT DU SIGNAL, 2024, 41 (05) : 2743 - 2749
  • [24] Frequency Domain CSP for Foot Motor Imagery Classification Using SVM for BCI Application
    Somadder, Rittika
    Saha, Dabasish Kumar
    2020 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES 2020): LEADING MODERN HEALTHCARE TECHNOLOGY ENHANCING WELLNESS, 2021, : 30 - 34
  • [25] A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data
    Kayikcioglu, Temel
    Aydemir, Onder
    PATTERN RECOGNITION LETTERS, 2010, 31 (11) : 1207 - 1215
  • [26] Classification of Motor Imagery BCI Using Multiband Tangent Space Mapping
    Islam, Md Rabiul
    Tanaka, Toshihisa
    Akter, Most Sheuli
    Molla, Md Khademul Islam
    2017 22ND INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2017,
  • [27] Multivariate empirical mode decomposition
    Rehman, N.
    Mandic, D. P.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2117): : 1291 - 1302
  • [28] Classification based on sparse representations of attributes derived from empirical mode decomposition in a multiclass problem of motor imagery in EEG signals
    de Menezes, Jose Antonio Alves
    Gomes, Juliana Carneiro
    Hazin, Vitor de Carvalho
    Dantas, Julio Cesar Sousa
    Rodrigues, Marcelo Cairrao Araujo
    dos Santos, Wellington Pinheiro
    HEALTH AND TECHNOLOGY, 2023, 13 (05) : 747 - 767
  • [29] Task Transfer Learning for EEG Classification in Motor Imagery-Based BCI System
    Zheng, Xuanci
    Li, Jie
    Ji, Hongfei
    Duan, Lili
    Li, Maozhen
    Pang, Zilong
    Zhuang, Jie
    Rongrong, Lu
    Tianhao, Gao
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2020, 2020
  • [30] A novel channel selection method for optimal classification in different motor imagery BCI paradigms
    Shan, Haijun
    Xu, Haojie
    Zhu, Shanan
    He, Bin
    BIOMEDICAL ENGINEERING ONLINE, 2015, 14 : 1