Classification of Motor Imagery BCI Using Multivariate Empirical Mode Decomposition

被引:170
|
作者
Park, Cheolsoo [1 ]
Looney, David [2 ]
Rehman, Naveed Ur [3 ]
Ahrabian, Alireza [2 ]
Mandic, Danilo P. [2 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Univ London Imperial Coll Sci Technol & Med, Elect & Elect Engn Dept, London SW7 2BT, England
[3] COMSATS Inst Informat Technol, Islamabad, Pakistan
关键词
Brain-computer interface (BCI); electroencephalogram (EEG); empirical mode decomposition; motor imagery paradigm; noise assisted multivariate extensions of empirical mode decomposition (NA-MEMD); BRAIN-COMPUTER INTERFACE; SINGLE-TRIAL EEG; DESYNCHRONIZATION; SYNCHRONIZATION; COMPONENTS; SPECTRUM; DYNAMICS; MU;
D O I
10.1109/TNSRE.2012.2229296
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Brain electrical activity recorded via electroencephalogram (EEG) is the most convenient means for brain-computer interface (BCI), and is notoriously noisy. The information of interest is located in well defined frequency bands, and a number of standard frequency estimation algorithms have been used for feature extraction. To deal with data nonstationarity, low signal-to-noise ratio, and closely spaced frequency bands of interest, we investigate the effectiveness of recently introduced multivariate extensions of empirical mode decomposition (MEMD) in motor imagery BCI. We show that direct multi-channel processing via MEMD allows for enhanced localization of the frequency information in EEG, and, in particular, its noise-assisted mode of operation (NA-MEMD) provides a highly localized time-frequency representation. Comparative analysis with other state of the art methods on both synthetic benchmark examples and a well established BCI motor imagery dataset support the analysis.
引用
收藏
页码:10 / 22
页数:13
相关论文
共 50 条
  • [1] Motor Imagery BCI Classification Based on Multivariate Variational Mode Decomposition
    Sadiq, Muhammad Tariq
    Yu, Xiaojun
    Yuan, Zhaohui
    Aziz, Muhammad Zulkifal
    Rehman, Naveed ur
    Ding, Weiping
    Xiao, Gaoxi
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2022, 6 (05): : 1177 - 1189
  • [2] Motor Imagery signal Classification for BCI System Using Empirical Mode Decomposition and Bandpower Feature Extraction
    Trad, Dalila
    Al-Ani, Tarik
    Jemni, Mohamed
    BRAIN-BROAD RESEARCH IN ARTIFICIAL INTELLIGENCE AND NEUROSCIENCE, 2016, 7 (02): : 5 - 16
  • [3] Subject Dependent Feature Extraction Method for Motor Imagery based BCI using Multivariate Empirical Mode Decomposition
    Zhang, Jin
    Yan, Chungang
    Gong, Xiaoliang
    2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2017,
  • [4] Truncation thresholds based empirical mode decomposition approach for classification performance of motor imagery BCI systems
    Dagdevir, Eda
    Tokmakci, Mahmut
    CHAOS SOLITONS & FRACTALS, 2021, 152
  • [5] EEG rhythm separation and time–frequency analysis of fast multivariate empirical mode decomposition for motor imagery BCI
    Yang Jiao
    Qian Zheng
    Dan Qiao
    Xun Lang
    Lei Xie
    Yi Pan
    Biological Cybernetics, 2024, 118 : 21 - 37
  • [6] Classification of Motor Imagery Tasks Using Phase Synchronization Analysis of EEG Based on Multivariate Empirical Mode Decomposition
    Liang, Shuang
    Choi, Kup-Sze
    Qin, Jing
    Pang, Wai-Man
    Heng, Pheng-Ann
    2014 4TH IEEE INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2014, : 674 - 677
  • [7] NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI
    Yin, Xuxian
    Xu, Baolei
    Jiang, Changhao
    Fu, Yunfa
    Wang, Zhidong
    Li, Hongyi
    Shi, Gang
    MEDICAL ENGINEERING & PHYSICS, 2015, 37 (03) : 280 - 286
  • [8] EEG rhythm separation and time-frequency analysis of fast multivariate empirical mode decomposition for motor imagery BCI
    Jiao, Yang
    Zheng, Qian
    Qiao, Dan
    Lang, Xun
    Xie, Lei
    Pan, Yi
    BIOLOGICAL CYBERNETICS, 2024, 118 (1-2) : 21 - 37
  • [9] Classification of motor imagery movements using multivariate empirical mode decomposition and short time Fourier transform based hybrid method
    Bashar, Syed Khairul
    Bhuiyan, Mohammed Imamul Hassan
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2016, 19 (03): : 1457 - 1464
  • [10] A New Method to Generate Artificial Frames Using the Empirical Mode Decomposition for an EEG-Based Motor Imagery BCI
    Dinares-Ferran, Josep
    Ortner, Rupert
    Guger, Christoph
    Sole-Casals, Jordi
    FRONTIERS IN NEUROSCIENCE, 2018, 12