Affine Toda field theory as a 3-dimensional integrable system

被引:15
作者
Kashaev, RM
Reshetikhin, N
机构
[1] UNIV CALIF BERKELEY, DEPT MATH, BERKELEY, CA 94720 USA
[2] ENSLYON, ENSLAPP, PHYS THEOR LAB, URA 14 36 CNRS, F-69007 LYON, FRANCE
[3] UNIV SAVOIE, ENSLAPP, ENSLYON, PHYS THEOR LAB, URA 14 36 CNRS, F-69007 LYON, FRANCE
关键词
D O I
10.1007/s002200050164
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The affine Toda field theory is studied as a 2+1-dimensional system. The third dimension appears as the discrete space dimension, corresponding to the simple roots in the A(N) affine root system, enumerated according to the cyclic order on the A(N) affine Dynkin diagram. We show that there exists a natural discretization of the affine Toda theory. The quantum analog of the tau-variables is found. The thermodynamic Bethe ansatz of the affine Toda system is studied in the limit L, N --> infinity. It is shown that the free energy of the systems grows proportionally to the volume.
引用
收藏
页码:251 / 266
页数:16
相关论文
共 41 条
[1]  
ABLOWITZ MJ, 1976, STUD APPL MATH, V55, P213
[2]   SCALES AND SCALING IN THE KONDO MODEL [J].
ANDREI, N ;
LOWENSTEIN, JH .
PHYSICAL REVIEW LETTERS, 1981, 46 (05) :356-360
[3]   QUANTUM S-MATRIX OF THE (1+1)-DIMENSIONAL TODD CHAIN [J].
ARINSHTEIN, AE ;
FATEYEV, VA ;
ZAMOLODCHIKOV, AB .
PHYSICS LETTERS B, 1979, 87 (04) :389-392
[4]  
BAZHANOV V, 1995, CHIRAL POTTS MODEL D
[5]   (ZNX)N-1 GENERALIZATION OF THE CHIRAL POTTS-MODEL [J].
BAZHANOV, VV ;
KASHAEV, RM ;
MANGAZEEV, VV ;
STROGANOV, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 138 (02) :393-408
[6]   NEW SOLVABLE LATTICE MODELS IN 3 DIMENSIONS [J].
BAZHANOV, VV ;
BAXTER, RJ .
JOURNAL OF STATISTICAL PHYSICS, 1992, 69 (3-4) :453-485
[7]   STAR TRIANGLE RELATION FOR A 3-DIMENSIONAL MODEL [J].
BAZHANOV, VV ;
BAXTER, RJ .
JOURNAL OF STATISTICAL PHYSICS, 1993, 71 (5-6) :839-864
[8]   THE DISCRETE QUANTUM PENDULUM [J].
BOBENKO, A ;
KUTZ, N ;
PINKALL, U .
PHYSICS LETTERS A, 1993, 177 (06) :399-404
[9]  
BOBENKO A, COMMUN MATH PHYS
[10]   KILLING VECTORS IN SELF-DUAL, EUCLIDEAN EINSTEIN-SPACES [J].
BOYER, CP ;
FINLEY, JD .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (06) :1126-1130