Low surface roughness and threading dislocation density Ge growth on Si (001)

被引:83
作者
Choi, Donghun [1 ]
Ge, Yangsi [1 ]
Harris, James S. [1 ]
Cagnon, Joel [2 ]
Stemmer, Susanne [2 ]
机构
[1] Stanford Univ, Solid State & Photon Lab, Stanford, CA 94305 USA
[2] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
关键词
atomic force microscopy; single crystal growth; chemical vapor deposition processes; semiconducting germanium;
D O I
10.1016/j.jcrysgro.2008.07.029
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Although several recent studies have successfully reduced the threading dislocation density (TDD) in Ge films grown on Si, high surface roughness is still problematic for useful nanoscale lithography and device fabrication. In this work, we achieved both low TDD and surface roughness by repeating a deposition-annealing cycle consisting of the following steps: low temperature deposition, high temperature and high rate deposition, high temperature hydrogen annealing. The root-mean-square roughness of the 3-cycle sample is in the range of 0.4-0.6 nm for 10 x 10 mu m(2) scan field atomic force microscopy (AFM) images. The TDD measured by plan-view TEM is 0.8-1 x 10(7) cm(-2) with a 1.44 mu m thickness sample. Furthermore, a 4-cycle sample reveals further improvement in surface planarity and pit density in the AFM images with a thickness of 2.38 mu m Ge. The high temperature and high rate Ge deposition combined with high-temperature hydrogen annealing efficiently reduces not only the TDD, but also the surface roughness. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:4273 / 4279
页数:7
相关论文
共 18 条
[1]   A theoretical model for threading dislocation reduction during selective area growth [J].
Beltz, GE ;
Chang, M ;
Eardley, MA ;
Pompe, W ;
Romanov, AE ;
Speck, JS .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1997, 234 :794-797
[2]   Low-temperature buffer layer for growth of a low-dislocation-density SiGe layer on Si by molecular-beam epitaxy [J].
Chen, H ;
Guo, LW ;
Cui, Q ;
Hu, Q ;
Huang, Q ;
Zhou, JM .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (02) :1167-1169
[3]   Molecular-beam epitaxial growth of III-V semiconductors on Ge/Si for metal-oxide-semiconductor device fabrication [J].
Choi, Donghun ;
Kim, Eunji ;
McIntyre, Paul C. ;
Harris, James S. .
APPLIED PHYSICS LETTERS, 2008, 92 (20)
[4]  
Chui CO, 2002, IEEE ELECTR DEVICE L, V23, P473, DOI [10.1109/LED.2002.801319, 10.1009/LED.2002.801319]
[5]   Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si [J].
Colace, L ;
Masini, G ;
Galluzzi, F ;
Assanto, G ;
Capellini, G ;
Di Gaspare, L ;
Palange, E ;
Evangelisti, F .
APPLIED PHYSICS LETTERS, 1998, 72 (24) :3175-3177
[6]   Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing [J].
Currie, MT ;
Samavedam, SB ;
Langdo, TA ;
Leitz, CW ;
Fitzgerald, EA .
APPLIED PHYSICS LETTERS, 1998, 72 (14) :1718-1720
[7]   LOW-TEMPERATURE GROWTH OF GE ON SI(100) [J].
EAGLESHAM, DJ ;
CERULLO, M .
APPLIED PHYSICS LETTERS, 1991, 58 (20) :2276-2278
[8]   GALLIUM-ARSENIDE AND OTHER COMPOUND SEMICONDUCTORS ON SILICON [J].
FANG, SF ;
ADOMI, K ;
IYER, S ;
MORKOC, H ;
ZABEL, H ;
CHOI, C ;
OTSUKA, N .
JOURNAL OF APPLIED PHYSICS, 1990, 68 (07) :R31-R58
[9]   Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers [J].
Groenert, ME ;
Leitz, CW ;
Pitera, AJ ;
Yang, V ;
Lee, H ;
Ram, RJ ;
Fitzgerald, EA .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (01) :362-367
[10]   Reduced pressure-chemical vapor deposition of intrinsic and doped Ge layers on Si(001) for microelectronics and optoelectronics purposes [J].
Hartmann, JM ;
Damlencourt, JF ;
Bogumilowicz, Y ;
Holliger, P ;
Rolland, G ;
Billon, T .
JOURNAL OF CRYSTAL GROWTH, 2005, 274 (1-2) :90-99