共 33 条
Measuring collective transport by defined numbers of processive and nonprocessive kinesin motors
被引:172
作者:
Furuta, Ken'ya
[1
]
Furuta, Akane
[1
]
Toyoshima, Yoko Y.
[2
]
Amino, Misako
[1
]
Oiwa, Kazuhiro
[1
,3
]
Kojima, Hiroaki
[1
]
机构:
[1] Natl Inst Informat & Commun Technol, Adv ICT Res Inst, Kobe, Hyogo 6512492, Japan
[2] Univ Tokyo, Grad Sch Arts & Sci, Dept Life Sci, Tokyo 1538902, Japan
[3] Univ Hyogo, Grad Sch Life Sci, Hyogo 6781297, Japan
来源:
关键词:
coordination of motor proteins;
optical trapping;
single molecule biophysics;
TUG-OF-WAR;
IN-VITRO;
INTRACELLULAR-TRANSPORT;
MICROTUBULE MOTORS;
VESICLE TRANSPORT;
NCD;
KINETICS;
DYNEIN;
COORDINATION;
MECHANISM;
D O I:
10.1073/pnas.1201390110
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Intracellular transport is thought to be achieved by teams of motor proteins bound to a cargo. However, the coordination within a team remains poorly understood as a result of the experimental difficulty in controlling the number and composition of motors. Here, we developed an experimental system that links together defined numbers of motors with defined spacing on a DNA scaffold. By using this system, we linked multiple molecules of two different types of kinesin motors, processive kinesin-1 or nonprocessive Ncd (kinesin-14), in vitro. Both types of kinesins markedly increased their processivities with motor number. Remarkably, despite the poor processivity of individual Ncd motors, the coupling of two Ncd motors enables processive movement for more than 1 mu m along microtubules (MTs). This improvement was further enhanced with decreasing spacing between motors. Force measurements revealed that the force generated by groups of Ncd is additive when two to four Ncd motors work together, which is much larger than that generated by single motors. By contrast, the force of multiple kinesin-1s depends only weakly on motor number. Numerical simulations and single-molecule unbinding measurements suggest that this additive nature of the force exerted by Ncd relies on fast MT binding kinetics and the large drag force of individual Ncd motors. These features would enable small groups of Ncd motors to cross-link MTs while rapidly modulating their force by forming clusters. Thus, our experimental system may provide a platform to study the collective behavior of motor proteins from the bottom up.
引用
收藏
页码:501 / 506
页数:6
相关论文