Isoginkgetin, a bioactive constituent from Ginkgo Biloba, protects against obesity-induced cardiomyopathy via enhancing Nrf2/ARE signaling

被引:18
作者
Wu, Xiaoqian [1 ,2 ,3 ,5 ]
Huang, Jianrong [1 ,2 ,5 ]
Tang, Junyuan [1 ,2 ,5 ]
Sun, Yuling [1 ,2 ,5 ]
Zhao, Guojun [3 ]
Yan, Cuishi [1 ,2 ,5 ]
Liu, Zhenghong [4 ]
Yi, Wei [1 ,2 ,5 ]
Xu, Suowen [4 ]
Yu, Xiyong [1 ,2 ,5 ]
机构
[1] Guangzhou Med Univ, Key Lab Mol Target & Clin Pharmacol & State, Guangzhou 511436, Peoples R China
[2] Guangzhou Med Univ, NMPA Key Lab Resp Dis, Guangzhou 511436, Peoples R China
[3] Guangzhou Med Univ, Affiliated Hosp 6, Qingyuan Peoples Hosp, Qingyuan 511500, Peoples R China
[4] Univ Sci & Technol China USTC, Affiliated Hosp USTC 1, Dept Endocrinol, Div Life Sci & Med, Hefei 230037, Peoples R China
[5] Guangzhou Med Univ, Affiliated Hosp 5, Guangzhou 511436, Peoples R China
基金
中国国家自然科学基金;
关键词
Obesity -induced cardiomyopathy; Mitochondrial dysfunction; Oxidative stress; Lipotoxicity; Nrf2; MITOCHONDRIAL; ACTIVATION; REDOX; HEART; DYSFUNCTION; ENERGETICS; AUTOPHAGY;
D O I
10.1016/j.redox.2022.102485
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Obesity-induced metabolic cardiomyopathy (MC), characterized by lipotoxicity and excessive oxidative stress, emerges as the leading cause of heart failure in the obese patients. Yet, its therapy remains very limited. Here, we demonstrated that isoginkgetin (IGK), a bioactive biflavonoid isolated from medicinal herb Ginkgo Biloba, pro-tected against obesity-induced cardiac diastolic dysfunction and adverse remodeling. Transcriptomics profiling revealed that IGK activated Nrf2 signaling in the heart tissues of the obese mice. Consistent with this observation, IGK treatment increased the nuclear translocation of Nrf2, which in turn trigger the activation of its downstream target genes (e. g. HO-1 and NQO1). In addition, IGK significantly rejuvenated mitochondrial defects in obese heart tissues as evidenced by enhancing mitochondrial respiratory capacity and resisting the collapse of mito-chondrial potential and oxidative stress both in vitro and in vivo. Mechanistically, IGK stabilized Nrf2 protein via inhibiting the proteasomal degradation, independent of transcription regulation. Moreover, molecular docking and dynamics simulation assessment demonstrated a good binding mode between IGK and Nrf2/Keap1. Of note, the protective effects conferred by IGK against obesity-induced mitochondrial defects and cardiac dysfunction was compromised by Nrf2 gene silencing both in vitro and in vivo, consolidating a pivotal role of Nrf2 in IGK-elicited myocardial protection against MC. Thus, the present study identifies IGK as a promising drug candi-date to alleviate obesity-induced oxidative stress and cardiomyocyte damage through Nrf2 activation, high-lighting the therapeutic potential of IGK in ameliorating obesity-induced cardiomyopathy.
引用
收藏
页数:13
相关论文
共 57 条
[1]   Cardiac remodeling in obesity [J].
Abel, E. Dale ;
Litwin, Sheldon E. ;
Sweeney, Gary .
PHYSIOLOGICAL REVIEWS, 2008, 88 (02) :389-419
[2]   Obesity and heart failure: epidemiology, pathophysiology, clinical manifestations, and management [J].
Alpert, Martin A. ;
Lavie, Carl J. ;
Agrawal, Harsh ;
Aggarwal, Kul B. ;
Kumar, Senthil A. .
TRANSLATIONAL RESEARCH, 2014, 164 (04) :345-356
[3]   Cardiovascular Outcomes in Patients With Type 2 Diabetes and Obesity: Comparison of Gastric Bypass, Sleeve Gastrectomy, and Usual Care [J].
Aminian, Ali ;
Wilson, Rickesha ;
Zajichek, Alexander ;
Tu, Chao ;
Wolski, Kathy E. ;
Schauer, Philip R. ;
Kattan, Michael W. ;
Nissen, Steven E. ;
Brethauer, Stacy A. .
DIABETES CARE, 2021, 44 (11) :2552-2563
[4]   Fumarate Is Cardioprotective via Activation of the Nrf2 Antioxidant Pathway [J].
Ashrafian, Houman ;
Czibik, Gabor ;
Bellahcene, Mohamed ;
Aksentijevic, Dunja ;
Smith, Anthony C. ;
Mitchell, Sarah J. ;
Dodd, Michael S. ;
Kirwan, Jennifer ;
Byrne, Jonathan J. ;
Ludwig, Christian ;
Isackson, Henrik ;
Yavari, Arash ;
Stottrup, Nicolaj B. ;
Contractor, Hussain ;
Cahill, Thomas J. ;
Sahgal, Natasha ;
Ball, Daniel R. ;
Birkler, Rune I. D. ;
Hargreaves, Lain ;
Tennant, Daniel A. ;
Land, John ;
Lygate, Craig A. ;
Johannsen, Mogens ;
Kharbanda, Rajesh K. ;
Neubauer, Stefan ;
Redwood, Charles ;
de Cabo, Rafael ;
Ahmet, Ismayil ;
Talan, Mark ;
Guenther, Ulrich L. ;
Robinson, Alan J. ;
Viant, Mark R. ;
Pollard, Patrick J. ;
Tyler, Damian J. ;
Watkins, Hugh .
CELL METABOLISM, 2012, 15 (03) :361-371
[5]  
McDonagh Theresa A, 2022, Rev Esp Cardiol (Engl Ed), V75, P523, DOI [10.1002/ejhf.2333, 10.1093/eurheartj/ehab368, 10.1016/j.rec.2022.05.005]
[6]   Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity [J].
Boudina, S ;
Sena, S ;
O'Neill, BT ;
Tathireddy, P ;
Young, ME ;
Abel, ED .
CIRCULATION, 2005, 112 (17) :2686-2695
[7]   Mitochondrial energetics in the heart in obesity-related diabetes - Direct evidence for increased uncoupled respiration and activation of uncoupling proteins [J].
Boudina, Sihem ;
Sena, Sandra ;
Theobald, Heather ;
Sheng, Xiaoming ;
Wright, Jordan J. ;
Hu, Xia Xuan ;
Aziz, Salwa ;
Johnson, Josie I. ;
Bugger, Heiko ;
Zaha, Vlad G. ;
Abel, E. Dale .
DIABETES, 2007, 56 (10) :2457-2466
[8]   HPLC SEPARATION AND QUANTITATIVE-DETERMINATION OF BIFLAVONES IN LEAVES FROM GINKGO-BILOBA [J].
BRIANCONSCHEID, F ;
LOBSTEINGUTH, A ;
ANTON, R .
PLANTA MEDICA, 1983, 49 (04) :204-207
[9]   Biochemistry and molecular cell biology of diabetic complications [J].
Brownlee, M .
NATURE, 2001, 414 (6865) :813-820
[10]   Mitochondrial bioenergetics is not impaired in nonobese subjects with type 2 diabetes mellitus [J].
Chattopadhyay, Mrittika ;
GuhaThakurta, Ishita ;
Behera, Prajna ;
Ranjan, Kumar Rajeev ;
Khanna, Manoj ;
Mukhopadhyay, Satinath ;
Chakrabarti, Sasanka .
METABOLISM-CLINICAL AND EXPERIMENTAL, 2011, 60 (12) :1702-1710