Biological Factors behind Melanoma Response to Immune Checkpoint Inhibitors

被引:33
作者
Olbryt, Magdalena [1 ]
Rajczykowski, Marcin [1 ]
Widlak, Wieslawa [1 ]
机构
[1] Maria Sklodowska Curie Natl Res Inst Oncol, Gliwice Branch, Wybrzeze Armii Krajowej 15, PL-44102 Gliwice, Poland
关键词
melanoma; immunotherapy; immune checkpoint inhibitors; biomarkers of response; T-CELL RESISTANCE; ACQUIRED-RESISTANCE; CTLA-4; BLOCKADE; IFN-GAMMA; METASTATIC MELANOMA; PD-L1; EXPRESSION; TUMOR-CELLS; CANCER; IMMUNOTHERAPY; MECHANISMS;
D O I
10.3390/ijms21114071
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Modern immunotherapy together with targeted therapy has revolutionized the treatment of advanced melanoma. Inhibition of immune checkpoints significantly improved the median overall survival and gave hope to many melanoma patients. However, this treatment has three serious drawbacks: high cost, serious side effects, and an effectiveness limited only to approximately 50% of patients. Some patients do not derive any or short-term benefit from this treatment due to primary or secondary resistance. The response to immunotherapy depends on many factors that fall into three main categories: those associated with melanoma cells, those linked to a tumor and its microenvironment, and those classified as individual ontogenic and physiological features of the patient. The first category comprises expression of PD-L1 and HLA proteins on melanoma cells as well as genetic/genomic metrics such as mutational load, (de)activation of specific signaling pathways and epigenetic factors. The second category is the inflammatory status of the tumor: "hot" versus "cold" (i.e., high versus low infiltration of immune cells). The third category comprises metabolome and single nucleotide polymorphisms of specific genes. Here we present up-to-date data on those biological factors influencing melanoma response to immunotherapy with a special focus on signaling pathways regulating the complex process of anti-tumor immune response. We also discuss their potential predictive capacity.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 119 条
[1]   Targeting DNA Methylation and EZH2 Activity to Overcome Melanoma Resistance to Immunotherapy [J].
Al Emran, Abdullah ;
Chatterjee, Aniruddha ;
Rodger, Euan J. ;
Tiffen, Jessamy C. ;
Gallagher, Stuart J. ;
Eccles, Michael R. ;
Hersey, Peter .
TRENDS IN IMMUNOLOGY, 2019, 40 (04) :328-344
[2]   Signatures of mutational processes in human cancer [J].
Alexandrov, Ludmil B. ;
Nik-Zainal, Serena ;
Wedge, David C. ;
Aparicio, Samuel A. J. R. ;
Behjati, Sam ;
Biankin, Andrew V. ;
Bignell, Graham R. ;
Bolli, Niccolo ;
Borg, Ake ;
Borresen-Dale, Anne-Lise ;
Boyault, Sandrine ;
Burkhardt, Birgit ;
Butler, Adam P. ;
Caldas, Carlos ;
Davies, Helen R. ;
Desmedt, Christine ;
Eils, Roland ;
Eyfjord, Jorunn Erla ;
Foekens, John A. ;
Greaves, Mel ;
Hosoda, Fumie ;
Hutter, Barbara ;
Ilicic, Tomislav ;
Imbeaud, Sandrine ;
Imielinsk, Marcin ;
Jaeger, Natalie ;
Jones, David T. W. ;
Jones, David ;
Knappskog, Stian ;
Kool, Marcel ;
Lakhani, Sunil R. ;
Lopez-Otin, Carlos ;
Martin, Sancha ;
Munshi, Nikhil C. ;
Nakamura, Hiromi ;
Northcott, Paul A. ;
Pajic, Marina ;
Papaemmanuil, Elli ;
Paradiso, Angelo ;
Pearson, John V. ;
Puente, Xose S. ;
Raine, Keiran ;
Ramakrishna, Manasa ;
Richardson, Andrea L. ;
Richter, Julia ;
Rosenstiel, Philip ;
Schlesner, Matthias ;
Schumacher, Ton N. ;
Span, Paul N. ;
Teague, Jon W. .
NATURE, 2013, 500 (7463) :415-+
[3]   Balancing cancer immunotherapy and immune-related adverse events: The emerging role of regulatory T cells [J].
Alissafi, T. ;
Hatzioannou, A. ;
Legaki, A. I. ;
Varveri, A. ;
Verginis, Panayotis .
JOURNAL OF AUTOIMMUNITY, 2019, 104
[4]   Interaction of the microbiota with the human body in health and diseases [J].
Altves, Safaa ;
Yildiz, Hatice Kubra ;
Vural, Hasibe Cingilli .
BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH, 2020, 39 (02) :23-32
[5]   Tumor infiltrating lymphocytes: The regulator of melanoma evolution [J].
Antohe, Mihaela ;
Nedelcu, Roxana Ioana ;
Nichita, Luciana ;
Popp, Cristiana Gabriela ;
Cioplea, Mirela ;
Brinzea, Alice ;
Hodorogea, Anastasia ;
Calinescu, Andreea ;
Balaban, Mihaela ;
Ion, Daniela Adriana ;
Diaconu, Carmen ;
Bleotu, Coralia ;
Pirici, Daniel ;
Zurac, Sabina Andrada ;
Turcu, Gabriela .
ONCOLOGY LETTERS, 2019, 17 (05) :4155-4161
[6]   Immunological effects of BRAF plus MEK inhibition [J].
Ascierto, Paolo A. ;
Dummer, Reinhard .
ONCOIMMUNOLOGY, 2018, 7 (09)
[7]   Resistance to Checkpoint Inhibition in Cancer Immunotherapy [J].
Barrueto, Luisa ;
Caminero, Francheska ;
Cash, Lindsay ;
Makris, Courtney ;
Lamichhane, Purushottam ;
Deshmukh, Rahul R. .
TRANSLATIONAL ONCOLOGY, 2020, 13 (03)
[8]   Constitutive and acquired mechanisms of resistance to immune checkpoint blockade in human cancer [J].
Bellone, Matteo ;
Elia, Angela Rita .
CYTOKINE & GROWTH FACTOR REVIEWS, 2017, 36 :17-24
[9]   Tumor Interferon Signaling Regulates a Multigenic Resistance Program to Immune Checkpoint Blockade [J].
Benci, Joseph L. ;
Xu, Bihui ;
Qiu, Yu ;
Wu, Tony J. ;
Dada, Hannah ;
Twyman-Saint Victor, Christina ;
Cucolo, Lisa ;
Lee, David S. M. ;
Pauken, Kristen E. ;
Huang, Alexander C. ;
Gangadhar, Tara C. ;
Amaravadi, Ravi K. ;
Schuchter, Lynn M. ;
Feldman, Michael D. ;
Ishwaran, Hemant ;
Vonderheide, Robert H. ;
Maity, Amit ;
Wherry, E. John ;
Minn, Andy J. .
CELL, 2016, 167 (06) :1540-+
[10]   Selective BRAFV600E Inhibition Enhances T-Cell Recognition of Melanoma without Affecting Lymphocyte Function [J].
Boni, Andrea ;
Cogdill, Alexandria P. ;
Dang, Ping ;
Udayakumar, Durga ;
Njauw, Ching-Ni Jenny ;
Sloss, Callum M. ;
Ferrone, Cristina R. ;
Flaherty, Keith T. ;
Lawrence, Donald P. ;
Fisher, David E. ;
Tsao, Hensin ;
Wargo, Jennifer A. .
CANCER RESEARCH, 2010, 70 (13) :5213-5219