Gaussian hidden variable graphical models are powerful tools to describe high-dimensional data; they capture dependencies between observed (Gaussian) variables by introducing a suitable number of hidden variables. However, such models are only applicable to Gaussian data. Moreover, they are sensitive to the choice of certain regularization parameters. In this paper, (1) copula Gaussian hidden variable graphical models are introduced, which extend Gaussian hidden variable graphical models to non-Gaussian data; (2) the sparsity pattern of the hidden variable graphical model is learned via stability selection, which leads to more stable results than cross-validation and other methods to select the regularization parameters. The proposed methods are validated on synthetic and real data.
机构:
Nankai Univ, Sch Stat & Data Sci, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, Tianjin 300071, Peoples R China
Li, Lijie
Yu, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Dongbei Univ Finance & Econ, Sch Data Sci & Artificial Intelligence, Dalian 116025, Liaoning, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, Tianjin 300071, Peoples R China
Yu, Yang
Liang, Wanfeng
论文数: 0引用数: 0
h-index: 0
机构:
Dongbei Univ Finance & Econ, Sch Data Sci & Artificial Intelligence, Dalian 116025, Liaoning, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, Tianjin 300071, Peoples R China
Liang, Wanfeng
Zou, Feng
论文数: 0引用数: 0
h-index: 0
机构:
Zhongnan Univ Econ & Law, Sch Stat & Math, Wuhan 430073, Hubei, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, Tianjin 300071, Peoples R China
机构:
Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9747 AG Groningen, NetherlandsUniv Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9747 AG Groningen, Netherlands
Abegaz, Fentaw
Wit, Ernst
论文数: 0引用数: 0
h-index: 0
机构:
Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9747 AG Groningen, NetherlandsUniv Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9747 AG Groningen, Netherlands
机构:
UCL, Dept Stat Sci, London, EnglandUCL, Dept Stat Sci, London, England
Alexopoulos, Angelos
Bottolo, Leonardo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, Dept Med Genet, London, England
Alan Turing Inst, London, England
Univ Cambridge, MRC Biostat Unit, Cambridge, EnglandUCL, Dept Stat Sci, London, England