A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH TWO YEARS OF SOUTH POLE TELESCOPE OBSERVATIONS

被引:234
|
作者
Reichardt, C. L. [1 ]
Shaw, L. [1 ,2 ]
Zahn, O. [3 ,4 ]
Aird, K. A. [5 ]
Benson, B. A. [6 ,7 ]
Bleem, L. E. [6 ,8 ]
Carlstrom, J. E. [6 ,7 ,8 ,9 ,10 ]
Chang, C. L. [6 ,7 ,10 ]
Cho, H. M. [11 ]
Crawford, T. M. [6 ,9 ]
Crites, A. T. [6 ,9 ]
de Haan, T. [12 ]
Dobbs, M. A. [12 ]
Dudley, J. [12 ]
George, E. M. [1 ]
Halverson, N. W. [13 ,14 ]
Holder, G. P. [12 ]
Holzapfel, W. L. [1 ]
Hoover, S. [6 ,8 ]
Hou, Z. [15 ]
Hrubes, J. D. [5 ]
Joy, M. [16 ]
Keisler, R. [6 ,8 ]
Knox, L. [15 ]
Lee, A. T. [1 ,17 ]
Leitch, E. M. [6 ,9 ]
Lueker, M. [18 ]
Luong-Van, D. [5 ]
McMahon, J. J. [19 ]
Mehl, J. [6 ]
Meyer, S. S. [6 ,7 ,8 ,9 ]
Millea, M. [15 ]
Mohr, J. J. [20 ,21 ,22 ]
Montroy, T. E. [23 ]
Natoli, T. [6 ,8 ]
Padin, S. [6 ,9 ,18 ]
Plagge, T. [6 ,9 ]
Pryke, C. [6 ,8 ,9 ,24 ]
Ruhl, J. E. [23 ]
Schaffer, K. K. [6 ,7 ,25 ]
Shirokoff, E. [1 ]
Spieler, H. G. [17 ]
Staniszewski, Z. [23 ]
Stark, A. A. [26 ]
Story, K. [6 ,8 ]
van Engelen, A. [12 ]
Vanderlinde, K. [12 ]
Vieira, J. D. [18 ]
Williamson, R. [6 ,9 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[3] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Labs, Berkeley, CA 94720 USA
[5] Univ Chicago, Chicago, IL 60637 USA
[6] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA
[7] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA
[8] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[9] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA
[10] Argonne Natl Lab, Argonne, IL 60439 USA
[11] NIST Quantum Devices Grp, Boulder, CO 80305 USA
[12] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[13] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA
[14] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[15] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[16] NASA, Dept Space Sci, Marshall Space Flight Ctr, Huntsville, AL 35812 USA
[17] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA
[18] CALTECH, Pasadena, CA 91125 USA
[19] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[20] Univ Munich, Dept Phys, D-81679 Munich, Germany
[21] Excellence Cluster Universe, D-85748 Garching, Germany
[22] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany
[23] Case Western Reserve Univ, Dept Phys, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA
[24] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA
[25] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA
[26] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
cosmic background radiation; cosmological parameters; cosmology: observations; diffuse radiation; large-scale structure of universe; ATACAMA COSMOLOGY TELESCOPE; ANGULAR POWER SPECTRUM; GALAXY CLUSTERS; PARAMETERS; PROBE; SKY; REIONIZATION; SIMULATIONS; CONSTRAINTS; IMPACT;
D O I
10.1088/0004-637X/755/1/70
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the first three-frequency South Pole Telescope (SPT) cosmic microwave background (CMB) power spectra. The band powers presented here cover angular scales 2000 < l < 9400 in frequency bands centered at 95, 150, and 220 GHz. At these frequencies and angular scales, a combination of the primary CMB anisotropy, thermal and kinetic Sunyaev-Zel'dovich (SZ) effects, radio galaxies, and cosmic infrared background (CIB) contributes to the signal. We combine Planck/HFI and SPT data at 220 GHz to constrain the amplitude and shape of the CIB power spectrum and find strong evidence for nonlinear clustering. We explore the SZ results using a variety of cosmological models for the CMB and CIB anisotropies and find them to be robust with one exception: allowing for spatial correlations between the thermal SZ effect and CIB significantly degrades the SZ constraints. Neglecting this potential correlation, we find the thermal SZ power at 150 GHz and l = 3000 to be 3.65 +/- 0.69 mu K-2, and set an upper limit on the kinetic SZ power to be less than 2.8 mu K-2 at 95% confidence. When a correlation between the thermal SZ and CIB is allowed, we constrain a linear combination of thermal and kinetic SZ power: D-3000(tSZ) + 0.5(3000)(DkSZ) = 4.60 +/- 0.63 mu K-2, consistent with earlier measurements. We use the measured thermal SZ power and an analytic, thermal SZ model calibrated with simulations to determine sigma(8) = 0.807 +/- 0.016. Modeling uncertainties involving the astrophysics of the intracluster medium rather than the statistical uncertainty in the measured band powers are the dominant source of uncertainty on sigma(8). We also place an upper limit on the kinetic SZ power produced by patchy reionization; a companion paper uses these limits to constrain the reionization history of the universe.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] A MEASUREMENT OF THE SECONDARY-CMB AND MILLIMETER-WAVE-FOREGROUND BISPECTRUM USING 800 deg2 OF SOUTH POLE TELESCOPE DATA
    Crawford, T. M.
    Schaffer, K. K.
    Bhattacharya, S.
    Aird, K. A.
    Benson, B. A.
    Bleem, L. E.
    Carlstrom, J. E.
    Chang, C. L.
    Cho, H-M.
    Crites, A. T.
    de Haan, T.
    Dobbs, M. A.
    Dudley, J.
    George, E. M.
    Halverson, N. W.
    Holder, G. P.
    Holzapfel, W. L.
    Hoover, S.
    Hou, Z.
    Hrubes, J. D.
    Keisler, R.
    Knox, L.
    Lee, A. T.
    Leitch, E. M.
    Lueker, M.
    Luong-Van, D.
    McMahon, J. J.
    Mehl, J.
    Meyer, S. S.
    Millea, M.
    Mocanu, L. M.
    Mohr, J. J.
    Montroy, T. E.
    Padin, S.
    Plagge, T.
    Pryke, C.
    Reichardt, C. L.
    Ruhl, J. E.
    Sayre, J. T.
    Shaw, L.
    Shirokoff, E.
    Spieler, H. G.
    Staniszewski, Z.
    Stark, A. A.
    Story, K. T.
    van Engelen, A.
    Vanderlinde, K.
    Vieira, J. D.
    Williamson, R.
    Zahn, O.
    ASTROPHYSICAL JOURNAL, 2014, 784 (02)
  • [42] PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE AND INFRARED BACKGROUND ANISOTROPIES
    Atrio-Barandela, F.
    Kashlinsky, A.
    ASTROPHYSICAL JOURNAL LETTERS, 2014, 797 (02)
  • [43] Detecting population III stars through observations of near-infrared cosmic infrared background anisotropies
    Kashlinsky, A
    Arendt, R
    Gardner, JP
    Mather, JC
    Moseley, SH
    ASTROPHYSICAL JOURNAL, 2004, 608 (01) : 1 - 9
  • [44] Improved measurement of the angular power spectrum of temperature anisotropy in the cosmic microwave background from two new analyses of boomerang observations
    Ruhl, JE
    Ade, PAR
    Bock, JJ
    Bond, JR
    Borrill, J
    Boscaleri, A
    Contaldi, CR
    Crill, BP
    de Bernardis, P
    De Troia, G
    Ganga, K
    Giacometti, M
    Hivon, E
    Hristov, VV
    Iacoangeli, A
    Jaffe, AH
    Jones, WC
    Lange, AE
    Masi, S
    Mason, P
    Mauskopf, PD
    Melchiorri, A
    Montroy, T
    Netterfield, CB
    Pascale, E
    Piacentini, F
    Pogosyan, D
    Polenta, G
    Prunet, S
    Romeo, G
    ASTROPHYSICAL JOURNAL, 2003, 599 (02) : 786 - 805
  • [46] SECOND SEASON QUIET OBSERVATIONS: MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRUM AT 95 GHz
    Araujo, D.
    Bischoff, C.
    Brizius, A.
    Buder, I.
    Chinone, Y.
    Cleary, K.
    Dumoulin, R. N.
    Kusaka, A.
    Monsalve, R.
    Kaess, S.
    Newburgh, L. B.
    Reeves, R.
    Wehus, I. K.
    Zwart, J. T. L.
    Bronfman, L.
    Bustos, R.
    Church, S. E.
    Dickinson, C.
    Eriksen, H. K.
    Gaier, T.
    Gundersen, J. O.
    Hasegawa, M.
    Hazumi, M.
    Huffenberger, K. M.
    Ishidoshiro, K.
    Jones, M. E.
    Kangaslahti, P.
    Kapner, D. J.
    Kubik, D.
    Lawrence, C. R.
    Limon, M.
    McMahon, J. J.
    Miller, A. D.
    Nagai, M.
    Nguyen, H.
    Nixon, G.
    Pearson, T. J.
    Piccirillo, L.
    Radford, S. J. E.
    Readhead, A. C. S.
    Richards, J. L.
    Samtleben, D.
    Seiffert, M.
    Shepherd, M. C.
    Smith, K. M.
    Staggs, S. T.
    Tajima, O.
    Thompson, K. L.
    Vanderlinde, K.
    Williamson, R.
    ASTROPHYSICAL JOURNAL, 2012, 760 (02)
  • [47] Large-scale cosmic microwave background anisotropies and dark energy
    Weller, J
    Lewis, AM
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 346 (03) : 987 - 993
  • [48] Effects of inflationary bubbles on the polarization and temperature anisotropies of the cosmic microwave background
    Baccigalupi, C
    Perrotta, F
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2000, 314 (01) : 1 - 10
  • [49] LARGE-ANGLE COSMIC MICROWAVE BACKGROUND ANISOTROPIES IN AN OPEN UNIVERSE
    KAMIONKOWSKI, M
    SPERGEL, DN
    ASTROPHYSICAL JOURNAL, 1994, 432 (01) : 7 - 16
  • [50] The Atacama Cosmology Telescope: a measurement of the Cosmic Microwave Background power spectra at 98 and 150 GHz
    Choi, Steve K.
    Hasselfield, Matthew
    Ho, Shuay-Pwu Patty
    Koopman, Brian
    Lungu, Marius
    Abitbol, Maximilian H.
    Addison, Graeme E.
    Ade, Peter A. R.
    Aiola, Simone
    Alonso, David
    Amiri, Mandana
    Amodeo, Stefania
    Angile, Elio
    Austermann, Jason E.
    Baildon, Taylor
    Battaglia, Nick
    Beall, James A.
    Bean, Rachel
    Becker, Daniel T.
    Bond, J. Richard
    Bruno, Sarah Marie
    Calabrese, Erminia
    Calafut, Victoria
    Campusano, Luis E.
    Carrero, Felipe
    Chesmore, Grace E.
    Cho, Hsiao-mei
    Clark, Susan E.
    Cothard, Nicholas F.
    Crichton, Devin
    Crowley, Kevin T.
    Darwish, Omar
    Datta, Rahul
    Denison, Edward, V
    Devlin, Mark J.
    Duell, Cody J.
    Duff, Shannon M.
    Duivenvoorden, Adriaan J.
    Dunkley, Jo
    Dunner, Rolando
    Essinger-Hileman, Thomas
    Fankhanel, Max
    Ferraro, Simone
    Fox, Anna E.
    Fuzia, Brittany
    Gallardo, Patricio A.
    Gluscevic, Vera
    Golec, Joseph E.
    Grace, Emily
    Gralla, Megan
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (12):