Complete moment convergence for moving average process generated by ρ--mixing random variables

被引:0
|
作者
Zhang, Yong [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2015年
基金
中国国家自然科学基金;
关键词
complete moment convergence; moving average process; rho(-)-mixing; Marcinkiewicz-Zygmund strong law of large numbers; WEIGHTED SUMS; ARRAYS;
D O I
10.1186/s13660-015-0766-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {Y-i, -infinity< i < infinity} be a sequence of rho(-)-mixing random variables without the assumption of identical distributions, and {a(i), -infinity< i < infinity} be an absolutely summable sequence of real numbers. In this paper, under some suitable conditions, we establish the complete moment convergence for the partial sum of moving average processes {X-n = Sigma(infinity)(i=-infinity)a(i)Y(i+n), n >= 1}. These results promote and improve the corresponding results obtained by Li and Zhang (Stat. Probab. Lett. 70: 191-197, 2004) from NA to the case of rho(-)-mixing setting.
引用
收藏
页数:13
相关论文
共 50 条