UNIQUE FUNCTIONALS AND REPRESENTATIONS OF HECKE ALGEBRAS

被引:5
作者
Brubaker, Benjamin [1 ]
Bump, Daniel [2 ]
Friedberg, Solomon [3 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[3] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
基金
美国国家科学基金会;
关键词
Hecke algebra; unramified principal series; Demazure-Lusztig operator; unique functional; UNRAMIFIED PRINCIPAL SERIES; EQUIVARIANT K-THEORY; P-ADIC GROUPS; MODULES; THEOREM;
D O I
10.2140/pjm.2012.260.381
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Rogawski (1985) used the affine Hecke algebra to model the intertwining operators of unramified principal series representations of p-adic groups. On the other hand, a representation of this Hecke algebra in which the standard generators act by Demazure-Lusztig operators was introduced by Lusztig (1989) and applied by Kazhdan and Lusztig (1987) to prove the Deligne-Langlands conjecture. These operators appear in various other contexts. Ion (2006) used them to express matrix coefficients of principal series representations in terms of nonsymmetric Macdonald polynomials, while Brubaker, Bump and Licata (2011) found essentially the same operators underlying recursive relationships for Whittaker functions. Here we explain the role of unique functionals and Hecke algebras in these contexts and revisit the results of Ion from the point of view of Brubaker et al.
引用
收藏
页码:381 / 394
页数:14
相关论文
共 28 条
[1]  
Banks WD, 1998, MATH RES LETT, V5, P781
[2]  
Bourbaki N., 1968, ELEMENTS MATH GROUPE
[3]  
Brubaker B., 2011, PREPRINT
[4]  
CASSELMAN W, 1980, COMPOS MATH, V40, P387
[5]  
CASSELMAN W, 1980, COMPOS MATH, V41, P207
[6]  
Cherednik I., 1995, Int. Math. Res. Not., V10, P483, DOI [DOI 10.1155/S1073792895000341, 10.1155/S1073792895000341]
[7]  
Cherednik Ivan., 2003, Selecta Math, V9, P161, DOI DOI 10.1007/S00029-003-0329-3
[8]  
Chriss N, 1998, INT MATH RES NOTICES, V1998, P85
[9]  
Haines T., 2010, J. Ramanujan Math. Soc., V25, P113
[10]   Nonsymmetric Macdonald polynomials and matrix coefficients for unramified principal series [J].
Ion, B .
ADVANCES IN MATHEMATICS, 2006, 201 (01) :36-62