LIMIT SHAPES FOR GROWING EXTREME CHARACTERS OF U(∞)

被引:13
作者
Borodin, Alexei [1 ,2 ]
Bufetov, Alexey [2 ,3 ]
Olshanski, Grigori [2 ,3 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia
[3] Higher Sch Econ, Moscow, Russia
基金
美国国家科学基金会;
关键词
Limit shape; extreme character; signature; DIMENSIONAL UNITARY-GROUP; PLANCHEREL MEASURE; SYMMETRICAL GROUP; YOUNG-DIAGRAMS; REPRESENTATIONS; ASYMPTOTICS;
D O I
10.1214/14-AAP1050
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the existence of a limit shape and give its explicit description for certain probability distribution on signatures (or highest weights for unitary groups). The distributions have representation theoretic origin-they encode decomposition on irreducible characters of the restrictions of certain extreme characters of the infinite-dimensional unitary group U (infinity) to growing finite-dimensional unitary subgroups U (N). The characters of U(infinity) are allowed to depend on N. In a special case, this describes the hydrodynamic behavior for a family of random growth models in (2 + 1)-dimensions with varied initial conditions.
引用
收藏
页码:2339 / 2381
页数:43
相关论文
共 31 条
[1]  
Anderson G. W., 2010, CAMBRIDGE STUDIES AD, V118, DOI DOI 10.1017/CBO9780511801334
[2]  
[Anonymous], 1997, CLASSICAL GROUPS THE
[3]  
Biane P, 2001, INT MATH RES NOTICES, V2001, P179
[4]   REPRESENTATIONS OF UNITARY GROUPS AND FREE CONVOLUTION [J].
BIANE, P .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1995, 31 (01) :63-79
[5]  
Borodin A., 2013, PREPRINT
[6]  
Borodin A., 2012, PREPRINT
[7]   Asymptotics of Plancherel measures for the infinite-dimensional unitary group [J].
Borodin, Alexei ;
Kuan, Jeffrey .
ADVANCES IN MATHEMATICS, 2008, 219 (03) :894-931
[8]   Anisotropic Growth of Random Surfaces in 2+1 Dimensions [J].
Borodin, Alexei ;
Ferrari, Patrik L. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 325 (02) :603-684
[9]   The boundary of the Gelfand-Tsetlin graph: A new approach [J].
Borodin, Alexei ;
Olshanski, Grigori .
ADVANCES IN MATHEMATICS, 2012, 230 (4-6) :1738-1779
[10]  
BUFETOV A., 2013, PREPRINT