Hybridoma growth and productivity: effects of conditioned medium and of inoculum size

被引:7
作者
Dutton, RL [1 ]
Scharer, JM [1 ]
Moo-Young, M [1 ]
机构
[1] Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
batch culture; conditioned medium; growth; hybridoma; inoculum; protein productivity;
D O I
10.1023/A:1008060802286
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Apart from gas concentrations, temperature, and pH, generally only the initial conditions can be manipulated in batch culture. Inoculum size and initial conditioned medium concentration represent two important considerations for optimal batch production. Two hybridoma cell lines were used to assess the impact of these initial conditions on population growth and monoclonal antibody productivity in suspension batch culture. Varying initial cell concentration over the range of 1.0 X 10(5) cells mL(-1) to 3.0 X 10(5) cells mL(-1) did not affect maximum product titre or maximum volumetric cell-hours attained. Initial percent of conditioned medium up to 40 percent strongly impacted on population growth and productivity, with initial levels of 30 to 40% conditioned medium reducing or eliminating lag phase and increasing average viable cell density. However, specific productivity and product titre declined with increasing initial percent conditioned medium, even on a per volume of fresh medium basis. Glutamine and glucose depletion or ammonia toxicity could cause depressed product titres when conditioned medium is used. Glutamine and glucose levels can easily be replenished in conditioned medium at minimal cost, and ammonia can be removed. Specific productivity was higher during cyclic batch operating mode than during batch operating mode. This may be because cyclic batch operating mode results in an incidental volume of conditioned medium at the beginning of each cycle. A two stage, cyclic-batch/batch operating mode can be employed to fully utilize medium and maximize product titre.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 41 条