Recursive parameter estimation of thermostatically controlled loads via unscented Kalman filter

被引:10
|
作者
Burger, Eric M. [1 ]
Moura, Scott J. [1 ]
机构
[1] Univ Calif Berkeley, Energy Control & Applicat Lab, Berkeley, CA 94720 USA
来源
SUSTAINABLE ENERGY GRIDS & NETWORKS | 2016年 / 8卷
关键词
Smart grid; Unscented Kalman filter; Online system identification; Recursive parameter estimation; Thermostatically controlled loads (TCL); Demand response;
D O I
10.1016/j.segan.2016.09.001
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
For thermostatically controlled loads (TCLs) to perform demand response services in real-time markets, online methods for parameter estimation are needed. As the physical characteristics of a TCL change (e.g. the contents of a refrigerator or the occupancy of a conditioned room), it is necessary to update the parameters of the TCL model. Otherwise, the TCL will be incapable of accurately predicting its potential energy demand, thereby decreasing the reliability of a TCL aggregation to perform demand response. In this paper, we investigate the potential of various unscented Kalman filter (UKF) algorithm variations to recursively identify a TCL model that is non-linear in the parameters. Experimental results demonstrate the parameter estimation of two residential refrigerators. Finally, simulation results demonstrate the incorporation of the recursive parameter estimation methods into a model predictive controller for demand response. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:12 / 25
页数:14
相关论文
共 50 条
  • [1] Parameter Identifiability and Estimation of Thermostatically Controlled Loads
    Granitsas, Ioannis M.
    Hiskens, Ian A.
    Mathieu, Johanna L.
    Ledva, Gregory S.
    2023 IEEE BELGRADE POWERTECH, 2023,
  • [2] Lung model parameter estimation by unscented Kalman filter
    Saatci, Esra
    Akan, Aydin
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 2556 - +
  • [3] Adaptive unscented Kalman filter for neuronal state and parameter estimation
    Loïc J. Azzalini
    David Crompton
    Gabriele M. T. D’Eleuterio
    Frances Skinner
    Milad Lankarany
    Journal of Computational Neuroscience, 2023, 51 : 223 - 237
  • [4] Aerodynamic parameter estimation using adaptive unscented Kalman filter
    Majeed, M.
    Kar, Indra Narayan
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2013, 85 (04): : 267 - 279
  • [5] Adaptive unscented Kalman filter for neuronal state and parameter estimation
    Azzalini, Loic J.
    Crompton, David
    D'Eleuterio, Gabriele M. T.
    Skinner, Frances
    Lankarany, Milad
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2023, 51 (02) : 223 - 237
  • [6] Parameter Estimation of Biological Phenomena: An Unscented Kalman Filter Approach
    Meskin, N.
    Nounou, H.
    Nounou, M.
    Datta, A.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2013, 10 (02) : 537 - 543
  • [7] AN IMPROVED DUAL UNSCENTED KALMAN FILTER FOR STATE AND PARAMETER ESTIMATION
    Yu, Anxi
    Liu, Ye
    Zhu, Jubo
    Dong, Zhen
    ASIAN JOURNAL OF CONTROL, 2016, 18 (04) : 1427 - 1440
  • [8] Estimation of Hydrodynamic Coefficients using Unscented Kalman Filter and Recursive Least Square
    Subchan, Subchan
    Ismail, Rachmat Wahyudi
    Asfihani, Tahiyatul
    Adzkiya, Dieky
    2019 IEEE 11TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (IWCIA 2019), 2019, : 9 - 13
  • [9] A Bayesian Adaptive Unscented Kalman Filter for Aircraft Parameter and Noise Estimation
    Ding, Di
    He, Kai F.
    Qian, Wei Q.
    JOURNAL OF SENSORS, 2021, 2021
  • [10] Joint Unscented Kalman Filter for State and Parameter Estimation in Vehicle Dynamics
    Wielitzka, Mark
    Dagen, Matthias
    Ortmaier, Tobias
    2015 IEEE CONFERENCE ON CONTROL AND APPLICATIONS (CCA 2015), 2015, : 1945 - 1950