ALS-Associated FUS Mutations Result in Compromised FUS Alternative Splicing and Autoregulation

被引:101
作者
Zhou, Yueqin [1 ,2 ,3 ]
Liu, Songyan [1 ,2 ,3 ,4 ]
Liu, Guodong [1 ,2 ,3 ]
Oeztuerk, Arzu [1 ,2 ,3 ]
Hicks, Geoffrey G. [1 ,2 ,3 ]
机构
[1] Univ Manitoba, Manitoba Inst Cell Biol, Winnipeg, MB, Canada
[2] Univ Manitoba, Dept Biochem & Med Genet, Winnipeg, MB, Canada
[3] Univ Manitoba, Regenerat Med Program, Winnipeg, MB, Canada
[4] Univ Manitoba, Fac Pharm, Winnipeg, MB R3T 2N2, Canada
来源
PLOS GENETICS | 2013年 / 9卷 / 10期
关键词
AMYOTROPHIC-LATERAL-SCLEROSIS; RNA-BINDING PROTEINS; WILD-TYPE FUS; STRESS GRANULES; MESSENGER-RNAS; SARCOMA FUS; FUS/TLS; TDP-43; EXPRESSION; GENE;
D O I
10.1371/journal.pgen.1003895
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its carboxy-terminal nuclear localization signal, resulting in varying deficiencies of FUS nuclear localization and abnormal cytoplasmic accumulation. Increasing evidence suggests deficiencies in FUS nuclear function may contribute to neuron degeneration. Here we report a novel FUS autoregulatory mechanism and its deficiency in ALS-associated mutants. Using FUS CLIP-seq, we identified significant FUS binding to a highly conserved region of exon 7 and the flanking introns of its own pre-mRNAs. We demonstrated that FUS is a repressor of exon 7 splicing and that the exon 7-skipped splice variant is subject to nonsense-mediated decay (NMD). Overexpression of FUS led to the repression of exon 7 splicing and a reduction of endogenous FUS protein. Conversely, the repression of exon 7 was reduced by knockdown of FUS protein, and moreover, it was rescued by expression of EGFP-FUS. This dynamic regulation of alternative splicing describes a novel mechanism of FUS autoregulation. Given that ALS-associated FUS mutants are deficient in nuclear localization, we examined whether cells expressing these mutants would be deficient in repressing exon 7 splicing. We showed that FUS harbouring R521G, R522G or DExon15 mutation (minor, moderate or severe cytoplasmic localization, respectively) directly correlated with respectively increasing deficiencies in both exon 7 repression and autoregulation of its own protein levels. These data suggest that compromised FUS autoregulation can directly exacerbate the pathogenic accumulation of cytoplasmic FUS protein in ALS. We showed that exon 7 skipping can be induced by antisense oligonucleotides targeting its flanking splice sites, indicating the potential to alleviate abnormal cytoplasmic FUS accumulation in ALS. Taken together, FUS autoregulation by alternative splicing provides insight into a molecular mechanism by which FUS-regulated pre-mRNA processing can impact a significant number of targets important to neurodegeneration.
引用
收藏
页数:17
相关论文
共 50 条
[41]   Mutations in FUS lead to synaptic dysregulation in ALS-iPSC derived neurons [J].
Shum, Carole ;
Hedges, Erin C. ;
Allison, Joseph ;
Lee, Youn-bok ;
Arias, Natalia ;
Cocks, Graham ;
Chandran, Siddharthan ;
Ruepp, Marc-David ;
Shaw, Christopher E. ;
Nishimura, Agnes L. .
STEM CELL REPORTS, 2024, 19 (02) :187-195
[42]   Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain [J].
Rogelj, Boris ;
Easton, Laura E. ;
Bogu, Gireesh K. ;
Stanton, Lawrence W. ;
Rot, Gregor ;
Curk, Tomaz ;
Zupan, Blaz ;
Sugimoto, Yoichiro ;
Modic, Miha ;
Haberman, Nejc ;
Tollervey, James ;
Fujii, Ritsuko ;
Takumi, Toru ;
Shaw, Christopher E. ;
Ule, Jernej .
SCIENTIFIC REPORTS, 2012, 2
[43]   FUS mutations dominate TBK1 mutations in FUS/TBK1 double-mutant ALS/FTD pedigrees [J].
Brenner, David ;
Mueller, Kathrin ;
Lattante, Serena ;
Yilmaz, Rustem ;
Knehr, Antje ;
Freischmidt, Axel ;
Ludolph, Albert C. ;
Andersen, Peter M. ;
Weishaupt, Jochen H. .
NEUROGENETICS, 2022, 23 (01) :59-65
[44]   ALS-linked FUS mutations confer loss and gain of function in the nucleus by promoting excessive formation of dysfunctional paraspeckles [J].
An, Haiyan ;
Skelt, Lucy ;
Notaro, Antonietta ;
Highley, J. Robin ;
Fox, Archa H. ;
La Bella, Vincenzo ;
Buchman, Vladimir L. ;
Shelkovnikova, Tatyana A. .
ACTA NEUROPATHOLOGICA COMMUNICATIONS, 2019, 7
[45]   FUS mutations dominate TBK1 mutations in FUS/TBK1 double-mutant ALS/FTD pedigrees [J].
David Brenner ;
Kathrin Müller ;
Serena Lattante ;
Rüstem Yilmaz ;
Antje Knehr ;
Axel Freischmidt ;
Albert C. Ludolph ;
Peter M. Andersen ;
Jochen H. Weishaupt .
neurogenetics, 2022, 23 :59-65
[46]   FUS regulates AMPA receptor function and FTLD/ALS-associated behaviour via GluA1 mRNA stabilization [J].
Udagawa, Tsuyoshi ;
Fujioka, Yusuke ;
Tanaka, Motoki ;
Honda, Daiyu ;
Yokoi, Satoshi ;
Riku, Yuichi ;
Ibi, Daisuke ;
Nagai, Taku ;
Yamada, Kiyofumi ;
Watanabe, Hirohisa ;
Katsuno, Masahisa ;
Inada, Toshifumi ;
Ohno, Kinji ;
Sokabe, Masahiro ;
Okado, Haruo ;
Ishigaki, Shinsuke ;
Sobue, Gen .
NATURE COMMUNICATIONS, 2015, 6
[47]   FUS regulates the alternative splicing of cell proliferation genes related to atherosclerosis [J].
Hou, Jianjun ;
Yang, Shaobing ;
Guo, Ying ;
Yan, Ning ;
Jia, Shaobin .
EXPERIMENTAL BIOLOGY AND MEDICINE, 2023, 248 (17) :1459-1468
[48]   Truncating mutations in FUS/TLS give rise to a more aggressive ALS-phenotype than missense mutations: a clinico-genetic study in Germany [J].
Waibel, S. ;
Neumann, M. ;
Rosenbohm, A. ;
Birve, A. ;
Volk, A. E. ;
Weishaupt, J. H. ;
Meyer, T. ;
Mueller, U. ;
Andersen, P. M. ;
Ludolph, A. C. .
EUROPEAN JOURNAL OF NEUROLOGY, 2013, 20 (03) :540-546
[49]   Atypical FTLD-FUS associated with ALS-TDP: A case report [J].
Kobayashi, Zen ;
Arai, Tetsuaki ;
Yokota, Osamu ;
Tsuchiya, Kuniaki ;
Hosokawa, Masato ;
Oshima, Kenichi ;
Niizato, Kazuhiro ;
Akiyama, Haruhiko ;
Mizusawa, Hidehiro .
NEUROPATHOLOGY, 2013, 33 (01) :83-86
[50]   Pathogenesis of FUS-associated ALS and FTD: insights from rodent models [J].
Matthew Nolan ;
Kevin Talbot ;
Olaf Ansorge .
Acta Neuropathologica Communications, 4