Multiple harmonic series related to multiple Euler numbers

被引:6
作者
Tsumura, H [1 ]
机构
[1] Tokyo Metropolitan Coll, Dept Management Informat, Tokyo 1968540, Japan
关键词
multiple harmonic series; Tornheim's double series; Euler numbers; Bernoulli numbers; Riemann zeta function; Mordell-Tornheim zeta functions;
D O I
10.1016/j.jnt.2003.12.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define the multiple Euler numbers and consider some multiple harmonic series of Mordell-Tornheim's type, which is a Partial sum of the Mordell-Tornheim zeta series defined by Matsumoto. Indeed, we prove a certain reducibility of these series as well as the multiple zeta values. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:155 / 168
页数:14
相关论文
共 10 条
[1]  
DILCHER K, 1988, MEM AM MATH SOC, P386
[2]   MULTIPLE HARMONIC SERIES [J].
HOFFMAN, ME .
PACIFIC JOURNAL OF MATHEMATICS, 1992, 152 (02) :275-290
[3]  
IHARA K, 2003, DERIVATION DOUBLE SH
[4]  
Matsumoto K, 2003, RO-MAN 2003: 12TH IEEE INTERNATIONAL WORKSHOP ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION, PROCEEDINGS, P1
[5]  
Mordell LJ., 1958, J. Lond. Math. Soc, V33, P368, DOI [10.1112/jlms/s1-33.3.368, DOI 10.1112/JLMS/S1-33.3.368]
[6]   HARMONIC DOUBLE SERIES [J].
TORNHEIM, L .
AMERICAN JOURNAL OF MATHEMATICS, 1950, 72 (02) :303-314
[7]   Combinatorial relations for Euler-Zagier sums [J].
Tsumura, H .
ACTA ARITHMETICA, 2004, 111 (01) :27-42
[8]   On alternating analogues of Tornheim's double series [J].
Tsumura, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (12) :3633-3641
[9]  
TSUMURA H, IN PRESS P AM MATH S
[10]  
ZAGIER D, 1994, PROG MATH, V120, P497