Estimation in zero-inflated binomial regression with missing covariates

被引:11
作者
Diallo, Alpha Oumar [1 ,2 ]
Diop, Aliou [1 ]
Dupuy, Jean-Francois [2 ]
机构
[1] Gaston Berger Univ, LERSTAD, CEA, MITIC, St Louis, Senegal
[2] Univ Rennes, INSA Rennes, CNRS, IRMAR,UMR 6625, F-35000 Rennes, France
关键词
Asymptotics; count data; excess of zeros; inverse-probability-weighting; GENERALIZED LINEAR-MODELS; PROPORTIONAL HAZARDS REGRESSION; MAXIMUM-LIKELIHOOD ESTIMATOR; POISSON REGRESSION; ASYMPTOTIC PROPERTIES; INCOMPLETE COVARIATE; LOGISTIC-REGRESSION; WEIGHTED ESTIMATORS; COUNT DATA; INFERENCE;
D O I
10.1080/02331888.2019.1619741
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate inverse-probability-weighted (IPW) maximum likelihood estimation in zero-inflated binomial regression with missing-at-random covariates. Large sample properties (consistency, asymptotic normality) of the IPW estimator are established. Finite sample properties are assessed via simulations. The methodology is illustrated on a real data set.
引用
收藏
页码:839 / 865
页数:27
相关论文
共 64 条
[21]   Reweighting estimators for the additive hazards model with missing covariates [J].
Hao, Meiling ;
Song, Xinyuan ;
Sun, Liuquan .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2014, 42 (02) :285-307
[22]   maxLik: A package for maximum likelihood estimation in R [J].
Henningsen, Arne ;
Toomet, Ott .
COMPUTATIONAL STATISTICS, 2011, 26 (03) :443-458
[23]   Likelihood-based methods for missing covariates in the Cox proportional hazards model [J].
Herring, AH ;
Ibrahim, JG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (453) :292-302
[24]   Maximum likelihood analysis of generalized linear models with missing covariates [J].
Horton, NJ ;
Laird, NM .
STATISTICAL METHODS IN MEDICAL RESEARCH, 1999, 8 (01) :37-50
[25]   A GENERALIZATION OF SAMPLING WITHOUT REPLACEMENT FROM A FINITE UNIVERSE [J].
HORVITZ, DG ;
THOMPSON, DJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1952, 47 (260) :663-685
[26]   Logistic regression analysis of randomized response data with missing covariates [J].
Hsieh, S. H. ;
Lee, S. M. ;
Shen, P. S. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (04) :927-940
[27]   Missing-data methods for generalized linear models: A comparative review [J].
Ibrahim, JG ;
Chen, MH ;
Lipsitz, SR ;
Herring, AH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (469) :332-346
[28]   INCOMPLETE DATA IN GENERALIZED LINEAR-MODELS [J].
IBRAHIM, JG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (411) :765-769
[29]   Missing covariates in generalized linear models when the missing data mechanism is non-ignorable [J].
Ibrahim, JG ;
Lipsitz, SR .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 :173-190
[30]  
Jiang J., 2010, SPRINGER TEXTS STAT, DOI DOI 10.1007/978-1-4419-6827-2